91 resultados para 730108 Cancer and related disorders
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: To 1) establish the lifetime and 12-month prevalence of DSM-5 bipolar and related disorders including the new algorithmically defined conditions grouped within Other Specified Bipolar and Related Disorders (OSBARD) as well as hyperthymic personality in a randomly selected community sample, and 2) determine the clinical relevance of the OSBARD category in terms of sociodemographic characteristics, course, comorbidity and treatment patterns by comparing the subjects of this category to those with bipolar-I (BP-I), bipolar-II (BP-II), major depressive disorder (MDD), and those with no history of mood disorders. METHODS: The semi-structured Diagnostic Interview for Genetic Studies was administered by masterslevel psychologists to a random sample of an urban area (n=3'719). RESULTS: The lifetime prevalence was 1.0% for BP-I, 0.8% for BP-II, 1.0% for OSBARD and 3% for hyperthymic personality. Subjects with OSBARD were more severely affected than subjects without a history of mood disorders regarding almost all clinical correlates. Compared to those with MDD, they also revealed an elevated risk of suicidal attempts, lower global functioning, more treatment seeking and more lifetime comorbidity including anxiety, substance use and impulse-control disorders. However, they did not differ from subjects with BP-II. LIMITATIONS: Small sample sizes for bipolar and related disorders and potential inaccurate recall of symptoms. CONCLUSIONS: The modifications of diagnostic criteria for manic/hypomanic episodes according to the DSM-5 only marginally affect the prevalence estimates for BP-I and BP-II. The new DSM-5 OSBARD category is associated with significant clinical burden, is hardly distinct from BP-II with respect to clinical correlates and deserves similar clinical attention.
Resumo:
The last 2 years have seen exciting advances in the genetics of Landau-Kleffner syndrome and related disorders, encompassed within the epilepsy-aphasia spectrum (EAS). The striking finding of mutations in the N-methyl-D-aspartate (NMDA) receptor subunit gene GRIN2A as the first monogenic cause in up to 20 % of patients with EAS suggests that excitatory glutamate receptors play a key role in these disorders. Patients with GRIN2A mutations have a recognizable speech and language phenotype that may assist with diagnosis. Other molecules involved in RNA binding and cell adhesion have been implicated in EAS; copy number variations are also found. The emerging picture highlights the overlap between the genetic determinants of EAS with speech and language disorders, intellectual disability, autism spectrum disorders and more complex developmental phenotypes.
Resumo:
OBJECTIVE: To identify pregnancy-related risk factors for different manifestations of congenital anorectal malformations (ARMs). DESIGN: A population-based case-control study. SETTING: Seventeen EUROCAT (European Surveillance of Congenital Anomalies) registries, 1980-2008. POPULATION: The study population consisted of 1417 cases with ARM, including 648 cases of isolated ARM, 601 cases of ARM with additional congenital anomalies, and 168 cases of ARM-VACTERL (vertebral, anal, cardiac, tracheo-esophageal, renal, and limb defects), along with 13 371 controls with recognised syndromes or chromosomal abnormalities. METHODS: Multiple logistic regression analyses were used to calculate adjusted odds ratios (ORs) for potential risk factors for ARM, such as fertility treatment, multiple pregnancy, primiparity, maternal illnesses during pregnancy, and pregnancy-related complications. MAIN OUTCOME MEASURES: Adjusted ORs for pregnancy-related risk factors for ARM. RESULTS: The ARM cases were more likely to be firstborn than the controls (OR 1.6, 95% CI 1.4-1.8). Fertility treatment and being one of twins or triplets seemed to increase the risk of ARM in cases with additional congenital anomalies or VACTERL (ORs ranging from 1.6 to 2.5). Maternal fever during pregnancy and pre-eclampsia were only associated with ARM when additional congenital anomalies were present (OR 3.9, 95% CI 1.3-11.6; OR 3.4, 95% CI 1.6-7.1, respectively), whereas maternal epilepsy during pregnancy resulted in a five-fold elevated risk of all manifestations of ARM (OR 5.1, 95% CI 1.7-15.6). CONCLUSIONS: This large European study identified maternal epilepsy, fertility treatment, multiple pregnancy, primiparity, pre-eclampsia, and maternal fever during pregnancy as potential risk factors primarily for complex manifestations of ARM with additional congenital anomalies and VACTERL.
Resumo:
NAD(+) biosynthesis through nicotinamide phosphoribosyltransferase (NAMPT) holds potential as a target for the treatment of inflammatory disorders due to NAD(+)'s role in immune cell signaling and metabolism. In addition to its activity as an enzyme, NAMPT is also secreted in the extracellular space where it acts as a pro-inflammatory and proangiogenic cytokine. NAMPT inhibition with FK866 has anti-inflammatory activity in different models of immune disorders and it prevents ischemia-reperfusion-induced heart damage by dampening the production of neutrophil chemoattractants. NAMPT blockade with a neutralizing antibody has beneficial effects in an acute lung injury model. Last, but not least, the anticancer activity of NAMPT inhibitors may also reflect, at least in part, their ability to modify the cancer microenvironment through their anti-inflammatory properties. Overall, NAMPT inhibition holds potential for the treatment of inflammation-related disorders and the development of effective and safe NAMPT inhibitors remains an area of strong interest in pharmaceutical research.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Resumo:
Motive-Oriented Therapeutic Relationship (MOTR, also called Complementary Therapeutic Relationship) has already shown itself to be related to therapeutic outcome in several studies. The present study aims to test MOTR in a 4-session Brief Psychodynamic Intervention for patients presenting with major depressive disorder (MDD) and comorbid personality disorder (PD). In total, N = 20 patients were selected; n = 10 had MDD, n = 10 had MDD with comorbid PD. The first therapy session was videotaped and analyzed by means of Plan Analysis and the MOTR scale. Results suggest a differential effect on outcome: only the nonverbal component of MOTR is related to symptomatic change in patients presenting with MDD and comorbid PD; no such effect was found for patients with MDD alone. These results are discussed in line with the generalization and refinement of the conclusions of previous findings on the MOTR. © 2011 Wiley Periodicals, Inc. J Clin Psychol 67:1-11, 2011.
Resumo:
Over the past few decades, Fourier transform infrared (FTIR) spectroscopy coupled to microscopy has been recognized as an emerging and potentially powerful tool in cancer research and diagnosis. For this purpose, histological analyses performed by pathologists are mostly carried out on biopsied tissue that undergoes the formalin-fixation and paraffin-embedding (FFPE) procedure. This processing method ensures an optimal and permanent preservation of the samples, making FFPE-archived tissue an extremely valuable source for retrospective studies. Nevertheless, as highlighted by previous studies, this fixation procedure significantly changes the principal constituents of cells, resulting in important effects on their infrared (IR) spectrum. Despite the chemical and spectral influence of FFPE processing, some studies demonstrate that FTIR imaging allows precise identification of the different cell types present in biopsied tissue, indicating that the FFPE process preserves spectral differences between distinct cell types. In this study, we investigated whether this is also the case for closely related cell lines. We analyzed spectra from 8 cancerous epithelial cell lines: 4 breast cancer cell lines and 4 melanoma cell lines. For each cell line, we harvested cells at subconfluence and divided them into two sets. We first tested the "original" capability of FTIR imaging to identify these closely related cell lines on cells just dried on BaF2 slides. We then repeated the test after submitting the cells to the FFPE procedure. Our results show that the IR spectra of FFPE processed cancerous cell lines undergo small but significant changes due to the treatment. The spectral modifications were interpreted as a potential decrease in the phospholipid content and protein denaturation, in line with the scientific literature on the topic. Nevertheless, unsupervised analyses showed that spectral proximities and distances between closely related cell lines were mostly, but not entirely, conserved after FFPE processing. Finally, PLS-DA statistical analyses highlighted that closely related cell lines are still successfully identified and efficiently distinguished by FTIR spectroscopy after FFPE treatment. This last result paves the way towards identification and characterization of cellular subtypes on FFPE tissue sections by FTIR imaging, indicating that this analysis technique could become a potential useful tool in cancer research.
Resumo:
Many assays to evaluate the nature, breadth, and quality of antigen-specific T cell responses are currently applied in human medicine. In most cases, assay-related protocols are developed on an individual laboratory basis, resulting in a large number of different protocols being applied worldwide. Together with the inherent complexity of cellular assays, this leads to unnecessary limitations in the ability to compare results generated across institutions. Over the past few years a number of critical assay parameters have been identified which influence test performance irrespective of protocol, material, and reagents used. Describing these critical factors as an integral part of any published report will both facilitate the comparison of data generated across institutions and lead to improvements in the assays themselves. To this end, the Minimal Information About T Cell Assays (MIATA) project was initiated. The objective of MIATA is to achieve a broad consensus on which T cell assay parameters should be reported in scientific publications and to propose a mechanism for reporting these in a systematic manner. To add maximum value for the scientific community, a step-wise, open, and field-spanning approach has been taken to achieve technical precision, user-friendliness, adequate incorporation of concerns, and high acceptance among peers. Here, we describe the past, present, and future perspectives of the MIATA project. We suggest that the approach taken can be generically applied to projects in which a broad consensus has to be reached among scientists working in fragmented fields, such as immunology. An additional objective of this undertaking is to engage the broader scientific community to comment on MIATA and to become an active participant in the project.
Resumo:
Elevated oxidative stress and alteration in antioxidant systems, including glutathione (GSH) decrease, are observed in schizophrenia. Genetic and functional data indicate that impaired GSH synthesis represents a susceptibility factor for the disorder. Here, we show that a genetically compromised GSH synthesis affects the morphological and functional integrity of hippocampal parvalbumin-immunoreactive (PV-IR) interneurons, known to be affected in schizophrenia. A GSH deficit causes a selective decrease of PV-IR interneurons in CA3 and dendate gyrus (DG) of the ventral but not dorsal hippocampus and a concomitant reduction of beta/gamma oscillations. Impairment of PV-IR interneurons emerges at the end of adolescence/early adulthood as oxidative stress increases or cumulates selectively in CA3 and DG of the ventral hippocampus. Such redox dysregulation alters stress and emotion-related behaviors but leaves spatial abilities intact, indicating functional disruption of the ventral but not dorsal hippocampus. Thus, a GSH deficit affects PV-IR interneuron's integrity and neuronal synchrony in a region- and time-specific manner, leading to behavioral phenotypes related to psychiatric disorders.
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.