190 resultados para 6DoF registration
em Université de Lausanne, Switzerland
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
Since 1988 the epidemiological surveillance of congenital anomalies (malformations, chromosomal aberrations, metabolic diseases, hereditary diseases, neurosensorial defects, etc.) is carried out by the Swiss registry of EUROCAT (European Registry of Congenital Anomalies and Twins). Several Swiss cantons collaborate through their own local registry, transmitting data to the central registry in Lausanne. We present the main objectives and methods of registration and give the global prevalence rates for the main malformations for 1996 and the period 1993-1996.
Resumo:
CONTEXT AND OBJECTIVES: A multicentric study was set up to assess the feasibility for Swiss cancer registries of actively retrieving 3 additional variables of epidemiological and a etiological relevance for melanoma, and of potential use for the evaluation of prevention campaigns. MATERIAL AND METHODS: The skin type, family history of melanoma and precise anatomical site were retrieved for melanoma cases registered in 5 Swiss cantons (Neuchâtel, St-Gall and Appenzell, Vaud and Wallis) over 3 to 6 consecutive years (1995-2002). Data were obtained via a short questionnaire administered by the physicians - mostly dermatologists - who originally excised the lesions. As the detailed body site was routinely collected in Ticino, data from this Cancer Registry were included in the body site analysis. Relative melanoma density (RMD) was computed by the ratio of observed to expected numbers of melanomas allowing for body site surface areas, and further adjusted for site-specific melanocyte density. RESULTS: Of the 1,645 questionnaires sent, 1,420 (86.3%) were returned. The detailed cutaneous site and skin type were reliably obtained for 84.7% and 78.7% of questionnaires, and family history was known in 76% of instances. Prevalence of sun-sensitive subjects and patients with melanoma affected first-degree relatives, two target groups for early detection and surveillance campaigns were 54.1% and 3.4%, respectively. After translation into the 4th digit of the International Classification of Diseases for Oncology, the anatomical site codes from printed (original information) and pictorial support (body chart from the questionnaire) concurred for 94.6% of lesions. Discrepancies occurred mostly for lesions on the upper, outer part of the shoulder for which the clinician's textual description was "shoulder blade". This differential misclassification suggests under-estimation by about 10% of melanomas of the upper limbs and an over-estimation of 5% for truncal melanomas. Sites of highest melanoma risk were the face, the shoulder and the upper arm for sexes, the back for men and the leg for women. Three major features of this series were: (1) an unexpectedly high RMD for the face in women (6.2 vs 4.2 in men), (2) the absence of a male predominance for melanomas on the ears, and (3) for the upper limbs, a steady gradient of increasing melanoma density with increasing proximity to the trunk, regardless of sex. DISCUSSION AND CONCLUSION: The feasibility of retrieving the skin type, the precise anatomical location and family history of melanoma in a reliable manner was demonstrated thanks to the collaboration of Swiss dermatologists. Use of a schematic body drawing improves the quality of the anatomical site data and facilitate the reporting task of doctors. Age and sex patterns of RMD paralleled general indicators of sun exposure and behaviour, except for the hand (RMD=0.2). These Swiss results support some site or sun exposure specificity in the aetiology of melanoma.
Resumo:
In the last five years, Deep Brain Stimulation (DBS) has become the most popular and effective surgical technique for the treatent of Parkinson's disease (PD). The Subthalamic Nucleus (STN) is the usual target involved when applying DBS. Unfortunately, the STN is in general not visible in common medical imaging modalities. Therefore, atlas-based segmentation is commonly considered to locate it in the images. In this paper, we propose a scheme that allows both, to perform a comparison between different registration algorithms and to evaluate their ability to locate the STN automatically. Using this scheme we can evaluate the expert variability against the error of the algorithms and we demonstrate that automatic STN location is possible and as accurate as the methods currently used.
Resumo:
In this paper we present a new method to track bonemovements in stereoscopic X-ray image series of the kneejoint. The method is based on two different X-ray imagesets: a rotational series of acquisitions of the stillsubject knee that will allow the tomographicreconstruction of the three-dimensional volume (model),and a stereoscopic image series of orthogonal projectionsas the subject performs movements. Tracking the movementsof bones throughout the stereoscopic image series meansto determine, for each frame, the best pose of everymoving element (bone) previously identified in the 3Dreconstructed model. The quality of a pose is reflectedin the similarity between its simulated projections andthe actual radiographs. We use direct Fourierreconstruction to approximate the three-dimensionalvolume of the knee joint. Then, to avoid the expensivecomputation of digitally rendered radiographs (DRR) forpose recovery, we reformulate the tracking problem in theFourier domain. Under the hypothesis of parallel X-raybeams, we use the central-slice-projection theorem toreplace the heavy 2D-to-3D registration of projections inthe signal domain by efficient slice-to-volumeregistration in the Fourier domain. Focusing onrotational movements, the translation-relevant phaseinformation can be discarded and we only consider scalarFourier amplitudes. The core of our motion trackingalgorithm can be implemented as a classical frame-wiseslice-to-volume registration task. Preliminary results onboth synthetic and real images confirm the validity ofour approach.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.