101 resultados para 5S ribosomal RNA genes
em Université de Lausanne, Switzerland
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
The Gac/Rsm signal transduction pathway positively regulates secondary metabolism, production of extracellular enzymes, and biocontrol properties of Pseudomonas fluorescens CHA0 via the expression of three noncoding small RNAs, termed RsmX, RsmY, and RsmZ. The architecture and function of the rsmY and rsmZ promoters were studied in vivo. A conserved palindromic upstream activating sequence (UAS) was found to be necessary but not sufficient for rsmY and rsmZ expression and for activation by the response regulator GacA. A poorly conserved linker region located between the UAS and the -10 promoter sequence was also essential for GacA-dependent rsmY and rsmZ expression, suggesting a need for auxiliary transcription factors. One such factor involved in the activation of the rsmZ promoter was identified as the PsrA protein, previously recognized as an activator of the rpoS gene and a repressor of fatty acid degradation. Furthermore, the integration host factor (IHF) protein was found to bind with high affinity to the rsmZ promoter region in vitro, suggesting that DNA bending contributes to the regulated expression of rsmZ. In an rsmXYZ triple mutant, the expression of rsmY and rsmZ was elevated above that found in the wild type. This negative feedback loop appears to involve the translational regulators RsmA and RsmE, whose activity is antagonized by RsmXYZ, and several hypothetical DNA-binding proteins. This highly complex network controls the expression of the three small RNAs in response to cell physiology and cell population densities.
Resumo:
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.
Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer.
Resumo:
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Resumo:
Immuno-electron microscopy was used to visualize the structure of reconstituted chromatin after in vitro transcription by purified T7 RNA polymerase. T7 RNA polymerase disrupts the nucleosomal structure in the transcribed region. This disruption is not influenced by the template, linear or supercoiled, and the presence or absence of nucleosomal positioning sequences in the transcribed region. In this study, we used monoclonal autoantibodies reacting with the nucleosome core particles and epitopes within several regions of the four different core histones. Some of the residues recognized by the autoantibodies are accessible on the surface of the nucleosomes and some are more internal and therefore less exposed at the surface. We show that the loss of the nucleosomal configuration during transcription is due to the loss of histone/DNA binding and that at least part of the histones are transferred to the nascent RNA chains. Consequently, after in vitro transcription by T7 RNA polymerase, the nucleosomal template does not conserve its original configuration, and no interaction of antigen/antibodies is observed anymore in the region that has been transcribed. Therefore, we conclude that in our in vitro transcription assay, nucleosomes are detached from the template, and not simply unfolded with histones remaining attached to the DNA.
Resumo:
Chlamydiae are obligate intracellular bacteria infecting free-living amoebae, vertebrates and some invertebrates. Novel members are regularly discovered, and there is accumulating evidence supporting a very important diversity of chlamydiae in the environment. In this study, we investigated the presence of chlamydiae in a drinking water treatment plant. Samples were used to inoculate Acanthamoeba monolayers (Acanthamoeba co-culture), and to recover autochthonous amoebae onto non-nutritive agar. Chlamydiae were searched for by a pan-chlamydia 16S rRNA gene PCR from both Acanthamoeba co-cultures and autochthonous amoebae, and phylotypes determined by 16S rRNA gene sequencing. Autochthonous amoebae also were identified by 18S rRNA gene amplification and sequencing. From a total of 79 samples, we recovered eight chlamydial strains by Acanthamoeba co-culture, but only one of 28 amoebae harboured a chlamydia. Sequencing results and phylogenetic analysis showed our strains belonging to four distinct chlamydial lineages. Four strains, including the strain recovered within its natural host, belonged to the Parachlamydiaceae; two closely related strains belonged to the Criblamydiaceae; two distinct strains clustered with Rhabdochlamydia spp.; one strain clustered only with uncultured environmental clones. Our results confirmed the usefulness of amoeba co-culture to recover novel chlamydial strains from complex samples and demonstrated the huge diversity of chlamydiae in the environment, by identifying several new species including one representing the first strain of a new family.
Resumo:
The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.
Resumo:
Plant health and fitness widely depend on interactions with soil microorganisms. Some bacteria such as pseudomonads can inhibit pathogens by producing antibiotics, and controlling these bacteria could help improve plant fitness. In the present study, we tested whether plants induce changes in the antifungal activity of root-associated bacteria as a response to root pathogens. We grew barley plants in a split-root system with one side of the root system challenged by the pathogen Pythium ultimum and the other side inoculated with the biocontrol strain Pseudomonas fluorescens CHA0. We used reporter genes to follow the expression of ribosomal RNA indicative of the metabolic state and of the gene phlA, required for production of 2,4-diacetylphloroglucinol, a key component of antifungal activity. Infection increased the expression of the antifungal gene phlA. No contact with the pathogen was required, indicating that barley influenced gene expression by the bacteria in a systemic way. This effect relied on increased exudation of diffusible molecules increasing phlA expression, suggesting that communication with rhizosphere bacteria is part of the pathogen response of plants. Tripartite interactions among plants, pathogens, and bacteria appear as a novel determinant of plant response to root pathogens.
Resumo:
Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.
Resumo:
Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.
Resumo:
Azithromycin at clinically relevant doses does not inhibit planktonic growth of the opportunistic pathogen Pseudomonas aeruginosa but causes markedly reduced formation of biofilms and quorum-sensing-regulated extracellular virulence factors. In the Gac/Rsm signal transduction pathway, which acts upstream of the quorum-sensing machinery in P. aeruginosa, the GacA-dependent untranslated small RNAs RsmY and RsmZ are key regulatory elements. As azithromycin treatment and mutational inactivation of gacA have strikingly similar phenotypic consequences, the effect of azithromycin on rsmY and rsmZ expression was investigated. In planktonically growing cells, the antibiotic strongly inhibited the expression of both small RNA genes but did not affect the expression of the housekeeping gene proC. The azithromycin treatment resulted in reduced expression of gacA and rsmA, which are known positive regulators of rsmY and rsmZ, and of the PA0588-PA0584 gene cluster, which was discovered as a novel positive regulatory element involved in rsmY and rsmZ expression. Deletion of this cluster resulted in diminished ability of P. aeruginosa to produce pyocyanin and to swarm. The results of this study indicate that azithromycin inhibits rsmY and rsmZ transcription indirectly by lowering the expression of positive regulators of these small RNA genes.
Resumo:
Genomic rearrangements at chromosome 13q31.3q32.1 have been associated with digital anomalies, dysmorphic features, and variable degree of mental disability. Microdeletions leading to haploinsufficiency of miR17∼92, a cluster of micro RNA genes closely linked to GPC5 in both mouse and human genomes, has recently been associated with digital anomalies in the Feingold like syndrome. Here, we report on a boy with familial dominant post-axial polydactyly (PAP) type A, overgrowth, significant facial dysmorphisms and autistic traits who carries the smallest germline microduplication known so far in that region. The microduplication encompasses the whole miR17∼92 cluster and the first 5 exons of GPC5. This report supports the newly recognized role of miR17∼92 gene dosage in digital developmental anomalies, and suggests a possible role of GPC5 in growth regulation and in cognitive development.
Resumo:
When all three separate quorum-sensing signals act in concert in Vibrio harveyi, they maximize bioluminescence and fully repress type III secretion. V. harveyi has five qrr loci encoding small RNA regulatory molecules, each consisting of about 100 nucleotides; several of them are involved in repressing bioluminescence. Small RNAs also play roles in population density-dependent activities, including regulation of virulence factors, for bacterial pathogens such as Pseudomonas fluorescens, V. cholerae, Salmonella enterica, Pseudomonas aeruginosa, and Erwinia spp. Although some bacteria appear to carry redundant copies of small RNA genes with which to finely tune expression