5 resultados para 5HT(2A)
em Université de Lausanne, Switzerland
Resumo:
Vaniprevir (MK-7009) is a macrocyclic hepatitis C virus (HCV) nonstructural protein 3/4A protease inhibitor. The aim of the present phase II study was to examine virologic response rates with vaniprevir in combination with pegylated interferon alpha-2a (Peg-IFN-α-2a) plus ribavirin (RBV). In this double-blind, placebo-controlled, dose-ranging study, treatment-naïve patients with HCV genotype 1 infection (n = 94) were randomized to receive open-label Peg-IFN-α-2a (180 μg/week) and RBV (1,000-1,200 mg/day) in combination with blinded placebo or vaniprevir (300 mg twice-daily [BID], 600 mg BID, 600 mg once-daily [QD], or 800 mg QD) for 28 days, then open-label Peg-IFN-α-2a and RBV for an additional 44 weeks. The primary efficacy endpoint was rapid viral response (RVR), defined as undetectable plasma HCV RNA at week 4. Across all doses, vaniprevir was associated with a rapid two-phase decline in viral load, with HCV RNA levels approximately 3 log(10) IU/mL lower in vaniprevir-treated patients, compared to placebo recipients. Rates of RVR were significantly higher in each of the vaniprevir dose groups, compared to the control regimen (68.8%-83.3% versus 5.6%; P < 0.001 for all comparisons). There were numerically higher, but not statistically significant, early and sustained virologic response rates with vaniprevir, as compared to placebo. Resistance profile was predictable, with variants at R155 and D168 detected in a small number of patients. No relationship between interleukin-28B genotype and treatment outcomes was demonstrated in this study. The incidence of adverse events was generally comparable between vaniprevir and placebo recipients; however, vomiting appeared to be more common at higher vaniprevir doses. CONCLUSION: Vaniprevir is a potent HCV protease inhibitor with a predictable resistance profile and favorable safety profile that is suitable for QD or BID administration.
Resumo:
Beta-lactams active against methicillin-resistant Staphylococcus aureus (MRSA) must resist penicillinase hydrolysis and bind penicillin-binding protein 2A (PBP 2A). Cefamandole might share these properties. When tested against 2 isogenic pairs of MRSA that produced or did not produce penicillinase, MICs of cefamandole (8-32 mg/L) were not affected by penicillinase, and cefamandole had a > or =40 times greater PBP 2A affinity than did methicillin. In rats, constant serum levels of 100 mg/L cefamandole successfully treated experimental endocarditis due to penicillinase-negative isolates but failed against penicillinase-producing organisms. This suggested that penicillinase produced in infected vegetations might hydrolyze the drug. Indeed, cefamandole was slowly degraded by penicillinase in vitro. Moreover, its efficacy was restored by combination with sulbactam in vivo. Cefamandole also uniformly prevented MRSA endocarditis in prophylaxis experiments, a setting in which bacteria were not yet clustered in the vegetations. Thus, while cefamandole treatment was limited by penicillinase, the drug was still successful for prophylaxis of experimental MRSA endocarditis.
Resumo:
Objectives Nosocomial Pseudomonas aeruginosa pneumonia remains a major concern in critically ill patients. We explored the potential impact of microorganism-targeted adjunctive immunotherapy in such patients. Patients and methods This multicentre, open pilot Phase 2a clinical trial (NCT00851435) prospectively evaluated the safety, pharmacokinetics and potential efficacy of three doses of 1.2 mg/kg panobacumab, a fully human monoclonal anti-lipopolysaccharide IgM, given every 72 h in 18 patients developing nosocomial P. aeruginosa (serotype O11) pneumonia. Results Seventeen out of 18 patients were included in the pharmacokinetic analysis. In 13 patients receiving three doses, the maximal concentration after the third infusion was 33.9 ± 8.0 μg/mL, total area under the serum concentration-time curve was 5397 ± 1993 μg h/mL and elimination half-life was 102.3 ± 47.8 h. Panobacumab was well tolerated, induced no immunogenicity and was detected in respiratory samples. In contrast to Acute Physiology and Chronic Health Evaluation II (APACHE II) prediction, all 13 patients receiving three doses survived, with a mean clinical resolution in 9.0 ± 2.7 days. Two patients suffered a recurrence at days 17 and 20. Conclusions These data suggest that panobacumab is safe, with a pharmacokinetic profile similar to that in healthy volunteers. It was associated with high clinical cure and survival rates in patients developing nosocomial P. aeruginosa O11 pneumonia. We concluded that these promising results warrant further trials.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.