14 resultados para 4,5-dichlorophthalate

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregating fetal liver cell cultures were tested for their ability to metabolize xenobiotics using ethoxycoumarin-O-deethylase (ECOD), as marker of phase I metabolism, and glutathione S-transferase (GST), as marker for phase II reactions. Significant basal activities, stable over 14 days in culture were measured for both ECOD and GST activities. The prototype cytochrome P450 inducers, 3-methylcholanthrene (3-MC) and phenobarbital (PB), increased ECOD and GST activities reaching an optimum 7 days after culturing, followed by a decline in activity. This decline was partially prevented by 1% dimethyl sulfoxide (DMSO) added chronically to the culture medium. DMSO was also found to induce ECOD activity and to a lesser extent GST activity. Furthermore, it potentiated in a dose-dependent manner the induction of ECOD by PB. The food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolically transformed through a number of pathways in vivo. It was therefore used to examine the metabolic capacity in fetal and adult liver cell aggregates. Metabolism of MeIQx was mainly through N2-conjugation, resulting in formation of the N2-glucuronide and sulfamate conjugates for non-induced fetal liver cells. These metabolites were also found in large amounts in non-induced adult liver cells. Low levels of cytochrome P450-mediated ring-hydroxylated metabolites were detected in both non-induced fetal and adult liver cells. After induction with arochlor (PCB) or 3-MC, the major pathway was ring-hydroxylation (cytochrome P450 dependent), followed by conjugation to beta-glucuronic or sulfuric acid. The presence of the glucuronide conjugate of N-hydroxy-MeIQx, a mutagenic metabolite, suggested an induction of P450 CYP1A2. The metabolism of MeIQx by liver cell aggregates is very similar to that observed in vivo and suggests that aggregating liver cell cultures are a useful model for in vitro metabolic studies in toxicology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptic-vesicle exocytosis is mediated by the vesicular Ca(2+) sensor synaptotagmin-1. Synaptotagmin-1 interacts with the SNARE protein syntaxin-1A and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). However, it is unclear how these interactions contribute to triggering membrane fusion. Using PC12 cells from Rattus norvegicus and artificial supported bilayers, we show that synaptotagmin-1 interacts with the polybasic linker region of syntaxin-1A independent of Ca(2+) through PIP2. This interaction allows both Ca(2+)-binding sites of synaptotagmin-1 to bind to phosphatidylserine in the vesicle membrane upon Ca(2+) triggering. We determined the crystal structure of the C2B domain of synaptotagmin-1 bound to phosphoserine, allowing development of a high-resolution model of synaptotagmin bridging two different membranes. Our results suggest that PIP2 clusters organized by syntaxin-1 act as molecular beacons for vesicle docking, with the subsequent Ca(2+) influx bringing the vesicle membrane close enough for membrane fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND STUDY AIMS: This was an observational, non-interventional, multicenter, phase IV study, in patients with genotype 1/4/5/6 chronic hepatitis C (CHC). The primary objectives were to evaluate SVR in patients with no or minimal fibrosis (METAVIR F0-F1) versus well established fibrosis (F2-F4), and to estimate response on Weeks 12, 24 and 48 on treatment in previously untreated patients with genotypes 1/4/5/6 CHC. PATIENTS AND METHODS: 538 patients treated with pegylated interferon alfa 2b 1.5 mcg/kg in combination with ribavirin 800-1200 mg/day were enrolled in 55 sites in Belgium and Luxembourg, 505 being considered for the analysis. 40% of the patients were female and 60% male, the average age was 47.5 years, 10.5% were 65 or older. RESULTS: SVR was observed in 35% of the patients, EVR in 68%, of which pEVR in 33% and cEVR in 35%. SVR was observed in 43% of the low fibrosis group (F0, F1) and 30% of the high fibrosis group (F2, F3, F4) (p = 0.005). SVR rates were 34% for genotype 1, 37% for genotype 4, and 47% for genotype 5 (NS). Multivariate analysis showed that EVR and baseline METAVIR score are independent prognostic factors for SVR. CONCLUSIONS: This trial confirms that fibrosis stage and early viral response are the most important key-factors to predict sustained response, suggesting that the earlier patients are treated, the better the outcome. Non-invasive techniques enable us to closely monitor progression of fibrosis, allowing a better selection of patients for antiviral treatment in the DAA-era.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of PIP(2) in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP(2) with PH-PLC-GFP or PIP5KIgamma RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIgamma improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP(2), transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP(2) co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIgamma-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIgamma, while blocking PIP(2) reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP(2) plays a pro-survival role in MIN6B1 cells, excessive PIP(2) production because of PIP5KIgamma over-expression inhibits secretion because of both a defective Arf6/PIP5KIgamma-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIgamma-dependent perturbation of F-actin cytoskeleton remodelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUME Les bétalaïnes sont des pigments chromo-alcaloïdes violets et jaunes présents dans les plantes appartenant à l'ordre des Caryophyllales et dans les champignons des genres Amanita et Hygrocybe. Leur courte voie de biosynthèse est élucidée chimiquement depuis de nombreuses années, mais les enzymes impliquées dans cette biosynthèse chez les plantes ne sont toujours pas caractérisées. L'enzyme de la DOPA-dioxygénase d' Amanita muscaria a été identifiée (Girod et Zryd, 1991a), mais de nombreuses tentatives d'isolation d'un homologue chez les plantes ont échoué. Afin d'isoler les gènes spécifiques des bétalaïnes chez les plantes, nous avons construit des banques soustraites d'ADNc à partir d'ARN total de pétales immatures de Portulaca grandiflora (Pg) de génotypes jaunes et blancs, respectivement violets et blancs. Les clones couleur- spécifiques ont été détectés en premier par analyse Northem du RNA de pétales blancs et colorés. Les candidats positifs ont alors été soumis à une analyse de transcription au niveau des tiges colorées, vertes et des feuilles, afin d'établir leur expression spécifique. Deux ARNs messagers complets ont une expression corrélée avec l'accumulation des bétalaïnes dans les tissus. Le premier de ces clones, A.16, code pour une oxydase de l'acyl-Coenzyme A (ACX) putative, mais le domaine de liaison du FAD essentiel pour l'activité d'ACX est absent. Toutes nos tentatives pour démontrer sa fonction ont échoué. Le rôle de cette protéine dans la voie de synthèse des bétalaïnes reste inconnu. Le deuxième de ces clones spécifique aux bétalaïnes, L.6 (isolé par Zaiko, 2000), a été renommé DODA en raison de son homologie avec le domaine LigB (pfam02900) d'une 4,5-dioxygénase extradiol bactérienne. DODA a été identifié in silico comme une dioxygénase extradiol en raison de la conservation stricte, au niveau de sa séquence peptidique, des résidus catalytiques de LigB et de ceux liant le cofacteur fer. Une analyse de transfert Southem a montré que ce gène est unique dans Pg. L'expression transitoire de DODA par transformation biolistique dans des pétales blancs de Pg a produit des taches violettes ou jaunes dans des cellules transformées. Une analyse HPLC de ces taches a démontré leur identité avec les bétalaïnes présentes naturellement dans les pétales violets et jaunes de Pg, confirmant ainsi la complémentation par le gène Pg DODA de l'allèle récessif cc présent dans les pétales blancs de Pg. Des homologues de DODA (DOPA-dioxygénase) ont été identifiés dans de nombreuses espèces de plantes, y compris dans celles sans bétalaïne. L'alignement de ces homologues a permis l'identification d'un motif spécifique aux bétalaïnes à côté d'une histidine catalytique conservée. Ce motif [H-P-(S,A)-(N,D)-x-T-P] remplace le motif [H-N-L-R] conservé dans les plantes sans bétalaïne et le motif [H-N-L-x] présent dans tous les homologues bactériens et archaebactériens. Une modélisation tridimensionnelle préliminaire du site actif de Pg DODA et de son homologue dans la mousse Physcomitrella patens a montré l'importance de ce motif spécifique aux bétalaïnes pour l'accessibilité du substrat au site actif. L'analyse phylogénétique de DODA a confirmé l'évolution séparée de cette protéine chez les plantes à bétalaïnes par comparaison avec celle des plantes sans bétalaïne. Nous avons donc conclu que les bétalaïnes sont apparues par modification de l'affinité pour un substrat d'enzymes similaires à DODA, chez un ancêtre unique des Caryophyllales qui a perdu toute capacité de biosynthèse des anthocyanes. Finalement, Pg DODA n'a aucune similarité avec la protéine DODA d' Amanita muscaria, bien que celle-ci complémente aussi la pigmentation des pétales blancs de Pg. La biosynthèse des bétalaïnes est un exemple remarquable de convergence évolutive biochimique indépendante entre espèces de règnes différents. ABSTRACT Betalains are violet and yellow chromo-alkaloid pigments present in plants belonging to the order Caryophyllales and also in the fungal genera Amanita and Hygrocybe. Their short biosynthetic pathway is chemically well understood since many years, but enzymes involved in the plant pathway are still uncharacterized. The DOPA-dioxygenase from Amanita muscaria was identified (Girod and Zryd, 1991a), but numerous attempts to identify a plant homologue to the corresponding gene, failed. In order to isolate betalain-specific genes in plants, subtractive cDNA libraries were built with total RNA from white and yellow and respectively, violet immature petals from Portulaca grandiflora (Pg) genotypes. Colour-specific clones were first detected by Northern blot analysis using RNA from white and coloured petals. Positive candidates were submitted to further transcription analysis in coloured, green stems and leaves in order to assess their specific expression. Two full-length mRNAs showed a correlated expression with betalain accumulation in tissues. One of them, A.16, encodes a putative acyl-Coenzyme A oxidase (ACX), but missing the FAD binding domain essential for the ACX activity. Thus, all attempts to demonstrate its function failed. The role of this protein in the betalain biosynthesis pathway, if any, is still unknown. The second betalain-specific mRNA, L.6 (isolated by Zaiko, 2000) shows a homology with a LigB domain (pfam02900) from a bacterial extradiol 4,5-dioxygenase. It was then renamed DODA (DOPA-dioxygenase). DODA was identified in silico as a highly conserved extradiol dioxygenase due to the strict conservation of its peptidic sequence with LigB catalytic residues and iron-binding cofactor residues. Southern blot analysis showed that this gene is a single copy-gene in Pg. Transient expression of DODA protein through biolistic transformation of Pg white petals produced violet or yellow spots in individual cells. HPLC analysis of these spots showed an identity with betalain pigments present naturally in yellow and violet Pg petals, thus confirming the complementation of the recessive cc allele present in Pg white petals by Pg DODA gene. DODA homologues were identified in numerous plant species including those without betalain. Alignment of these homologues allowed the identification of a betalain-specific pattern beside a highly conserved catalytic histidine. This [H-P-(S,A)-(N,D)-x-T-P] pattern replaces a [H-N-L-R] pattern strictly conserved in non-betalain plants and a [H-N-L-x] pattern present in all bacterial and archaebacterial homologues. Preliminary three-dimensional modeling of the active site of Pg DODA and its Physcomitrella patens moss homologue revealed the importance of this betalain-specific pattern for the substrate accessibility to the DODA active site. DODA phylogenetic analysis confirmed the separate evolution of this protein in betalain-producing plants. We conclude that betalain pigments appeared in a unique ancestor of the Caryophyllales order in which anthocyanin biosynthetic pathway was impaired, by a modification of enzymes of the DODA family for substrate affinity. The Pg DODA protein has no sequence similarity with Amanita muscaria DODA, despite the fact that they both complement Pg white petals for their pigmentation. Betalain biosynthesis is an interesting example of independent biochemical evolutionary convergence between species from different kingdoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase COTYLEDON VASCULAR PATTERN 2 (CVP2), but not in its homolog CVP2-LIKE 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, CLAVATA3/EMBRYO SURROUNDING REGION 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Laser photocoagulation and cryotherapy to completely destroy telangiectatic vessels and ischemic retina in Coats disease is barely applicable in advanced cases with total retinal detachment, and globe survival is notoriously poor in Stages 3B and 4. Anti-vascular endothelial growth factor intravitreal injections may offer new prospects for these patients. METHODS: This study is a retrospective review of all consecutive patients with Coats disease treated with neoadjuvant or adjuvant intravitreal ranibizumab plus conventional and amblyopia treatment as appropriate. RESULTS: Nine patients (median age, 13 months) presenting Coats Stages 3B and 4 (5 and 4 eyes, respectively) were included. Iris neovascularization resolved within 2 weeks and retinal reapplication within 4 months in all patients. At last follow-up, globe survival was 100% with anatomical success in 8 of the 9 eyes. With a median follow-up of 50 months, fibrotic vitreoretinopathy was developed in 5 of the 9 cases, one leading to tractional retinal detachment and ultimately phthisis bulbi. The remaining 4 of the 9 eyes achieved some vision (range, 0.02-0.063). CONCLUSION: To the best of the authors' knowledge, this is the largest reported series of late-stage Coats undergoing anti-vascular endothelial growth factor therapy, a homogenous cohort of patients treated with a single agent and with the longest follow-up. This study supports the role of ranibizumab in advanced disease by transient restoration of the hemato-retinal barrier and suppression of neovascularization to facilitate classic treatment. At the last follow-up, the authors report unprecedented anatomical success and functional outcome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.