49 resultados para 3D scalar data

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two-dimensional (2D)-breath-hold coronary magnetic resonance angiography (MRA) has been shown to be a fast and reliable method to depict the proximal coronary arteries. Recent developments, however, allow for free-breathing navigator gated and navigator corrected three-dimensional (3D) coronary MRA. These 3D approaches have potential for improved signal-to-noise ratio (SNR) and allow for the acquisition of adjacent thin slices without the misregistration problems known from 2D approaches. Still, a major impediment of a 3D acquisition is the increased scan time. The purpose of this study was the implementation of a free-breathing navigator gated and corrected ultra-fast 3D coronary MRA technique, which allows for scan times of less than 5 minutes. Twelve healthy adult subjects were examined in the supine position using a navigator gated and corrected ECG triggered ultra-fast 3D interleaved gradient echo planar imaging sequence (TFE-EPI). A 3D slab, consisting of 20 slices with a reconstructed slice thickness of 1.5 mm, was acquired with free-breathing. The diastolic TFE-EPI acquisition block was preceded by a T2prep pre-pulse, a diaphragmatic navigator pulse, and a fat suppression pre-pulse. With a TR of 19 ms and an effective TE of 5.4 ms, the duration of the data acquisition window duration was 38 ms. The in-plane spatial resolution was 1.0-1.3 mm*1.5-1.9 mm. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and right coronary artery (RCA) could be visualized with an average scan time for the entire 3D-volume data set of 2:57 +/- 0:51 minutes. Average contiguous vessel length visualized was 53 +/- 11 mm (range: 42 to 75 mm) for the LAD and 84 +/- 14 mm (range: 62 to 112 mm) for the RCA. Contrast-to-noise between coronary blood and myocardium was 5.0 +/- 2.3 for the LM/LAD and 8.0 +/- 2.9 for the RCA, resulting in an excellent suppression of myocardium. We present a new approach for free-breathing 3D coronary MRA, which allows for scan times superior to corresponding 2D coronary MRA approaches, and which takes advantage of the enhanced SNR of 3D acquisitions and the post-processing benefits of thin adjacent slices. The robust image quality and the short average scanning time suggest that this approach may be useful for screening the major coronary arteries or identification of anomalous coronary arteries. J. Magn. Reson. Imaging 1999;10:821-825.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluid that fills boreholes in crosswell electrical resistivity investigations provides the necessary electrical contact between the electrodes and the rock formation but it is also the source of image artifacts in standard inversions that do not account for the effects of the boreholes. The image distortions can be severe for large resistivity contrasts between the rock formation and borehole fluid and for large borehole diameters. We have carried out 3D finite-element modeling using an unstructured-grid approach to quantify the magnitude of borehole effects for different resistivity contrasts, borehole diameters, and electrode configurations. Relatively common resistivity contrasts of 100:1 and borehole diameters of 10 and 20 cm yielded, for a bipole length of 5 m, apparent resistivity underestimates of approximately 12% and 32% when using AB-MN configurations and apparent resistivity overestimates of approximately 24% and 95% when using AM-BN configurations. Effects are generally more severe at shorter bipole spacings. We report the results obtained by either including or ignoring the boreholes in inversions of 3D field data from a test site in Switzerland, where approximately 10,000 crosswell resistivity-tomography measurements were made across six acquisition planes among four boreholes. Inversions of raw data that ignored the boreholes filled with low-resistivity fluid paradoxically produced high-resistivity artifacts around the boreholes. Including correction factors based on the modeling results fora ID model with and without the boreholes did not markedly improve the images. The only satisfactory approach was to use a 3D inversion code that explicitly incorporated the boreholes in the actual inversion. This new approach yielded an electrical resistivity image that was devoid of artifacts around the boreholes and that correlated well with coincident crosswell radar images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray microtomography has become a new tool in earth sciences to obtain non-destructive 3D-image data from geological objects in which variations in mineralogy, chemical composition and/or porosity create sufficient x-ray density contrasts.We present here first, preliminary results of an application to the external and internal morphology of Permian to Recent Larger Foraminifera. We use a SkyScan-1072 high-resolution desk-top micro-CT system. The system has a conical x-ray source with a spot size of about 5µm that runs at 20-100kV, 0-250µA, resulting in a maximal resolution of 5µm. X-ray transmission images are captured by a scintillator coupled via fibre optics to a 1024x1024 pixel 12-bit CCD. The object is placed between the x-ray source and the scintillator on a stub that rotates 360°around its vertical axis in steps as small as 0.24 degrees. Sample size is limited to 2 cm due to the absorption of geologic material for x-rays. The transmission images are back projected using a Feldkamp algorithm into a vertical stack of up to 1000 1Kx1K images that represent horizontal cuts of the object. This calculation takes 2 to several hours on a Double-Processor 2.4GHz PC. The stack of images (.bmp) can be visualized with any 3D-imaging software, used to produce cuts of Larger Foraminifera. Among other applications, the 3D-imaging software furnished by SkyScan can produce 3D-models by defining a threshold density value to distinguish "solid" from "void. Several models with variable threshold values and colors can be imbricated, rotated and cut together. The best results were obtained with microfossils devoid of chamber-filling cements (Permian, Eocene, Recent). However, even slight differences in cement mineralogy/composition can result in surprisingly good x-ray density contrasts.X-ray microtomography may develop into a powerful tool for larger microfossils with a complex internal structure, because it is non-destructive, requires no preparation of the specimens, and produces a true 3D-image data set. We will use these data sets in the future to produce cuts in any direction to compare them with arbitrary cuts of complex microfossils in thin sections. Many groups of benthic and planktonic foraminifera may become more easily determinable in thin section by this way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Des développements antérieurs, au sein de l'Institut de Géophysique de Lausanne, ont permis de développer des techniques d'acquisition sismique et de réaliser l'interprétation des données sismique 2D et 3D pour étudier la géologie de la région et notamment les différentes séquences sédimentaires du Lac Léman. Pour permettre un interprétation quantitative de la sismique en déterminant des paramètres physiques des sédiments la méthode AVO (Amplitude Versus Offset) a été appliquée. Deux campagnes sismiques lacustres, 2D et 3D, ont été acquises afin de tester la méthode AVO dans le Grand Lac sur les deltas des rivières. La géométrie d'acquisition a été repensée afin de pouvoir enregistrer les données à grands déports. Les flûtes sismiques, mises bout à bout, ont permis d'atteindre des angles d'incidence d'environ 40˚ . Des récepteurs GPS spécialement développés à cet effet, et disposés le long de la flûte, ont permis, après post-traitement des données, de déterminer la position de la flûte avec précision (± 0.5 m). L'étalonnage de nos hydrophones, réalisé dans une chambre anéchoïque, a permis de connaître leur réponse en amplitude en fonction de la fréquence. Une variation maximale de 10 dB a été mis en évidence entre les capteurs des flûtes et le signal de référence. Un traitement sismique dont l'amplitude a été conservée a été appliqué sur les données du lac. L'utilisation de l'algorithme en surface en consistante a permis de corriger les variations d'amplitude des tirs du canon à air. Les sections interceptes et gradients obtenues sur les deltas de l'Aubonne et de la Dranse ont permis de produire des cross-plots. Cette représentation permet de classer les anomalies d'amplitude en fonction du type de sédiments et de leur contenu potentiel en gaz. L'un des attributs qui peut être extrait des données 3D, est l'amplitude de la réflectivité d'une interface sismique. Ceci ajoute une composante quantitative à l'interprétation géologique d'une interface. Le fond d'eau sur le delta de l'Aubonne présente des anomalies en amplitude qui caractérisent les chenaux. L'inversion de l'équation de Zoeppritz par l'algorithme de Levenberg-Marquardt a été programmée afin d'extraire les paramètres physiques des sédiments sur ce delta. Une étude statistique des résultats de l'inversion permet de simuler la variation de l'amplitude en fonction du déport. On a obtenu un modèle dont la première couche est l'eau et dont la seconde est une couche pour laquelle V P = 1461 m∕s, ρ = 1182 kg∕m3 et V S = 383 m∕s. Abstract A system to record very high resolution (VHR) seismic data on lakes in 2D and 3D was developed at the Institute of Geophysics, University of Lausanne. Several seismic surveys carried out on Lake Geneva helped us to better understand the geology of the area and to identify sedimentary sequences. However, more sophisticated analysis of the data such as the AVO (Amplitude Versus Offset) method provides means of deciphering the detailed structure of the complex Quaternary sedimentary fill of the Lake Geneva trough. To study the physical parameters we applied the AVO method at some selected places of sediments. These areas are the Aubonne and Dranse River deltas where the configurations of the strata are relatively smooth and the discontinuities between them easy to pick. A specific layout was developed to acquire large incidence angle. 2D and 3D seismic data were acquired with streamers, deployed end to end, providing incidence angle up to 40˚ . One or more GPS antennas attached to the streamer enabled us to calculate individual hydrophone positions with an accuracy of 50 cm after post-processing of the navigation data. To ensure that our system provides correct amplitude information, our streamer sensors were calibrated in an anechoic chamber using a loudspeaker as a source. Amplitude variations between the each hydrophone were of the order of 10 dB. An amplitude correction for each hydrophone was computed and applied before processing. Amplitude preserving processing was then carried out. Intercept vs. gradient cross-plots enable us to determine that both geological discontinuities (lacustrine sediments/moraine and moraine/molasse) have well defined trends. A 3D volume collected on the Aubonne river delta was processed in order ro obtain AVO attributes. Quantitative interpretation using amplitude maps were produced and amplitude maps revealed high reflectivity in channels. Inversion of the water bottom of the Zoeppritz equation using the Levenberg-Marquadt algorithm was carried out to estimate V P , V S and ρ of sediments immediately under the lake bottom. Real-data inversion gave, under the water layer, a mud layer with V P = 1461 m∕s, ρ = 1182 kg∕m3 et V S = 383 m∕s.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.