146 resultados para 3D ULTRASONOGRAPHY
em Université de Lausanne, Switzerland
Resumo:
The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.
Resumo:
RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.
Resumo:
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
BACKGROUND: Contrast-enhanced ultrasonography (CEUS) is a novel imaging technique that is safe and applicable on the bedside. Recent developments seem to enable CEUS to quantify organ perfusion. We performed an exploratory study to determine the ability of CEUS to detect changes in renal perfusion and to correlate them with effective renal plasma flow. METHODS: CEUS with destruction-refilling sequences was studied in 10 healthy subjects, at baseline and during infusion of angiotensin II (AngII) at low (1 ng/kg/min) and high dose (3 ng/kg/min) and 1 h after oral captopril (50 mg). Perfusion index (PI) was obtained and compared with the effective renal plasma flow (ERPF) obtained by parallel para-aminohippurate (PAH) clearance. RESULTS: Median PI decreased from 188.6 (baseline) to 100.4 with low-dose AngII (-47%; P < 0.02) and to 66.1 with high-dose AngII (-65%; P < 0.01) but increased to 254.7 with captopril (+35%; P > 0.2). These changes parallelled those observed with ERPF, which changed from a median of 672.1 mL/min (baseline) to 572.3 (low-dose AngII, -15%, P < 0.05) and to 427.2 (high-dose AngII, -36%, P < 0.001) and finally 697.1 (captopril, +4%, P < 0.02). CONCLUSIONS: This study demonstrates that CEUS is able to detect changes in human renal cortical microcirculation as induced by AngII infusion and/or captopril administration. The changes in perfusion indices parallel those in ERPF as obtained by PAH clearance.
Resumo:
This prospective study compares repetitive thick-slab single-shot projection magnetic resonance cholangiopancreatography (MRCP) with endoscopic ultrasonography (EUS) for the detection of choledocholithiasis. Fifty-seven consecutive patients (36 women, mean age 61) referred for suspected choledocholithiasis underwent MRCP, followed by EUS. Each procedure was performed by different operators blinded to the results of the other investigation. MR technique included a turbo spin-echo T2-weighted axial sequence with selective fat saturation (SPIR/TSE, TE=70 ms, TR=1,600 ms), followed by coronal dynamic MRCP. The same thick-slab slice was sequentially acquired 12 times as breath-hold single-shot projection imaging (SSh, TE=900 ms, TE=8,000 ms) centred on the common bile duct (CBD). Two experienced radiologists independently and blindly evaluated MR images for the detection of CBD stones. Their inter-observer agreement kappa was determined. Secondly, the two observers read MR images in consensus again. CBD stones were demonstrated in 18 out of 57 patients (31.6 %) and confirmed by endoscopic retrograde cholangiography (ERCP, n=17) or intraoperative cholangiography (n=1). Clinical follow-up served as the "gold standard" in patients with negative results without following invasive procedure (n=28). Sensitivity, specificity, accuracy, positive and negative predictive value for MRCP resulting from consensus reading were 94.9%, 94.4%, 94.7%, 97.4% and 89.5%, respectively. Corresponding values of EUS were 97.4%, 94.4%, 96.5%, 97.4% and 94.4%. Inter-observer agreement kappa was 0.81. Repetitive thick-slab single-shot projection MRCP is an accurate non-invasive imaging modality for suspected choledocholithiasis and should be increasingly used to select those patients who require a subsequent therapeutic procedure, namely ERCP.
Resumo:
Malonate, methylmalonate and propionate are potentially neurotoxic metabolites in branched-chain organic acidurias. Their effects were tested on cultured 3D rat brain cell aggregates, using dosages of 0.1, 1.0 and 10.0 mM with a short but intense (twice a day over 3 days) and a longer but less intense treatment (every 3 rdday over 9 days). CNS cell-specific immunohistochemical stainings allowed the follow-up of neurons (axons, phosphorylated medium-weight neurofilament), astrocytes (glial fibrillary acidic protein) and oligodendrocytes (myelin basic protein). Methylmalonate and malonate were quantified by tandem mass spectrometry. Tandem mass spectrometry analysis of harvested brain cell aggregates revealed clear intracellular accumulation of methylmalonate and malonate. In immunohistochemical stainings oligodendrocytes appeared the most affected brain cells. The MBP signal disappeared already at 0.1 mM treatment with each metabolite. Mature astrocytes were not affected by propionate, while immature astrocytes on intense treatment with propionate developed cell swelling. 1 mM methylmalonate induced cell swelling of both immature and mature astrocytes , while 1 mM malonate only affected mature astrocytes. Neurons were not affected by methylmalonate, but 10.0 mM malonate on less intense treatment and 0.1, 1.0 and 10.0 mM propionate on intense treatment affected axonal growth. Our study shows significant uptake and deleterious effects of these metabolites on brain cells, principally on astrocytes and oligodendrocytes. This may be explained by the absence of the pathway in glial cells, which thus are not able to degrade these metabolites. Further studies are ongoing to elucidate the underlying mechanisms of the observed neurotoxic effects.
Resumo:
The action of various DNA topoisomerases frequently results in characteristic changes in DNA topology. Important information for understanding mechanistic details of action of these topoisomerases can be provided by investigating the knot types resulting from topoisomerase action on circular DNA forming a particular knot type. Depending on the topological bias of a given topoisomerase reaction, one observes different subsets of knotted products. To establish the character of topological bias, one needs to be aware of all possible topological outcomes of intersegmental passages occurring within a given knot type. However, it is not trivial to systematically enumerate topological outcomes of strand passage from a given knot type. We present here a 3D visualization software (TopoICE-X in KnotPlot) that incorporates topological analysis methods in order to visualize, for example, knots that can be obtained from a given knot by one intersegmental passage. The software has several other options for the topological analysis of mechanisms of action of various topoisomerases.