3 resultados para 322
em Université de Lausanne, Switzerland
Resumo:
Pharmacogenomics is a field with origins in the study of monogenic variations in drug metabolism in the 1950s. Perhaps because of these historical underpinnings, there has been an intensive investigation of 'hepatic pharmacogenes' such as CYP450s and liver drug metabolism using pharmacogenomics approaches over the past five decades. Surprisingly, kidney pathophysiology, attendant diseases and treatment outcomes have been vastly under-studied and under-theorized despite their central importance in maintenance of health, susceptibility to disease and rational personalized therapeutics. Indeed, chronic kidney disease (CKD) represents an increasing public health burden worldwide, both in developed and developing countries. Patients with CKD suffer from high cardiovascular morbidity and mortality, which is mainly attributable to cardiovascular events before reaching end-stage renal disease. In this paper, we focus our analyses on renal function before end-stage renal disease, as seen through the lens of pharmacogenomics and human genomic variation. We herein synthesize the recent evidence linking selected Very Important Pharmacogenes (VIP) to renal function, blood pressure and salt-sensitivity in humans, and ways in which these insights might inform rational personalized therapeutics. Notably, we highlight and present the rationale for three applications that we consider as important and actionable therapeutic and preventive focus areas in renal pharmacogenomics: 1) ACE inhibitors, as a confirmed application, 2) VDR agonists, as a promising application, and 3) moderate dietary salt intake, as a suggested novel application. Additionally, we emphasize the putative contributions of gene-environment interactions, discuss the implications of these findings to treat and prevent hypertension and CKD. Finally, we conclude with a strategic agenda and vision required to accelerate advances in this under-studied field of renal pharmacogenomics with vast significance for global public health.
Resumo:
To assess the impact of admission to different hospital types on early and 1-year outcomes in patients with acute coronary syndrome (ACS). Between 1997 and 2009, 31 010 ACS patients from 76 Swiss hospitals were enrolled in the AMIS Plus registry. Large tertiary institutions with continuous (24 hour/7 day) cardiac catheterisation facilities were classified as type A hospitals, and all others as type B. For 1-year outcomes, a subgroup of patients admitted after 2005 were studied. Eleven type A hospitals admitted 15987 (52%) patients and 65 type B hospitals 15023 (48%) patients. Patients admitted into B hospitals were older, more frequently female, diabetic, hypertensive, had more severe comorbidities and more frequent non-ST segment elevation (NSTE)-ACS/unstable angina (UA). STE-ACS patients admitted into B hospitals received more thrombolysis, but less percutaneous coronary intervention (PCI). Crude in-hospital mortality and major adverse cardiac events (MACE) were higher in patients from B hospitals. Crude 1-year mortality of 3747 ACS patients followed up was higher in patients admitted into B hospitals, but no differences were found for MACE. After adjustment for age, risk factors, type of ACS and comorbidities, hospital type was not an independent predictor of in-hospital mortality, in-hospital MACE, 1-year MACE or mortality. Admission indicated a crude outcome in favour of hospitalisation during duty-hours while 1-year outcome could not document a significant effect. ACS patients admitted to smaller regional Swiss hospitals were older, had more severe comorbidities, more NSTE-ACS and received less intensive treatment compared with the patients initially admitted to large tertiary institutions. However, hospital type was not an independent predictor of early and mid-term outcomes in these patients. Furthermore, our data suggest that Swiss hospitals have been functioning as an efficient network for the past 12 years.
Resumo:
Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR.