8 resultados para 2016 ALA Annual Poster Show

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene transfer that relies on integrating vectors often suffers from epigenetic or regulatory effects that influence the expression of the therapeutic gene and=or of cellular genes located near the vector integration site in the chromosome. Insulator elements act to block gene activation by enhancers, while chromatin domain boundary or barrier sequences prevent gene-silencing effects. At present, the modes of action of insulator and barriers are poorly understood, and their use in the context of gene therapies remains to be documented. Using combinations of reporter genes coding for indicator fluorescent proteins, we constructed assay systems that allow the quantification of the insulator or of the barrier activities of genetic elements in individual cells. This presentation will illustrate how these assay systems were used to identify short DNA elements that can insulate nearby genes from activation by viral vector enhancer elements, and=or that can block the propagation of a silent chromatin structure that leads to gene silencing. We will show that small elements of the order of 100-400 nucleotides can be designed to achieve both insulator and boundary function, as needed for safer integrating viral vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In otherwise successful gene therapy trials insertional mutagenesis has resulted in leukemia. The identification of new short synthetic genetic insulator elements (GIE) which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts with e.g. b-globin HS4, have met with poor efficacy and genetic instability. We have investigated potential improvement with two new candidate synthetic GIEs in SIN-gamma and lentiviral vectors. With each constructs two internal promoters have been tested: either the strong Fr- MuLV-U3 or the housekeeping hPGK.We could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro and lentivectors. In target cells a dramatic shift of expression is observed with an homogenous profile the level of which strictly depends on the promoter strength. These data remain stable in both HeLa cells over three months and cord blood HSCs for two months, irrespective of the multiplicity of infection (MOI). In comparison, control native and SIN vectors expression levels show heterogeneous, depend on the MOI and prove unstable. We have undertaken genotoxicity assessment in comparing integration patterns ingenuity in human target cells sampled over three months using high-throughput pyro-sequencing. Data will be presented. Further genotoxicity assessment will include in vivo studies. We have established insulated vectors which harbour both boundary and enhancer-blocking effect and show stable in prolonged in vitro culture conditions. Work performed with support of EC-DG research FP6-NoE, CLINIGENE: LSHB-CT-2006-018933

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We manipulate distributive justice rules of demographic quotas in university selection. Results show that quotas involving students' need are preferred over equity and authority ranking quotas. International students also differentiate more between quotas than locals, preferring those advantaging them. This suggests that universities should consider students' need in their selection.