95 resultados para 2-DIMENSIONAL ELECTRON GASES

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les échantillons biologiques ne s?arrangent pas toujours en objets ordonnés (cristaux 2D ou hélices) nécessaires pour la microscopie électronique ni en cristaux 3D parfaitement ordonnés pour la cristallographie rayons X alors que de nombreux spécimens sont tout simplement trop << gros D pour la spectroscopie NMR. C?est pour ces raisons que l?analyse de particules isolées par la cryo-microscopie électronique est devenue une technique de plus en plus importante pour déterminer la structure de macromolécules. Néanmoins, le faible rapport signal-sur-bruit ainsi que la forte sensibilité des échantillons biologiques natifs face au faisceau électronique restent deux parmi les facteurs limitant la résolution. La cryo-coloration négative est une technique récemment développée permettant l?observation des échantillons biologiques avec le microscope électronique. Ils sont observés à l?état vitrifié et à basse température, en présence d?un colorant (molybdate d?ammonium). Les avantages de la cryo-coloration négative sont étudiés dans ce travail. Les résultats obtenus révèlent que les problèmes majeurs peuvent êtres évités par l?utilisation de cette nouvelle technique. Les échantillons sont représentés fidèlement avec un SNR 10 fois plus important que dans le cas des échantillons dans l?eau. De plus, la comparaison de données obtenues après de multiples expositions montre que les dégâts liés au faisceau électronique sont réduits considérablement. D?autre part, les résultats exposés mettent en évidence que la technique est idéale pour l?analyse à haute résolution de macromolécules biologiques. La solution vitrifiée de molybdate d?ammonium entourant l?échantillon n?empêche pas l?accès à la structure interne de la protéine. Finalement, plusieurs exemples d?application démontrent les avantages de cette technique nouvellement développée.<br/><br/>Many biological specimens do not arrange themselves in ordered assemblies (tubular or flat 2D crystals) suitable for electron crystallography, nor in perfectly ordered 3D crystals for X-ray diffraction; many other are simply too large to be approached by NMR spectroscopy. Therefore, single-particles analysis has become a progressively more important technique for structural determination of large isolated macromolecules by cryo-electron microscopy. Nevertheless, the low signal-to-noise ratio and the high electron-beam sensitivity of biological samples remain two main resolution-limiting factors, when the specimens are observed in their native state. Cryo-negative staining is a recently developed technique that allows the study of biological samples with the electron microscope. The samples are observed at low temperature, in the vitrified state, but in presence of a stain (ammonium molybdate). In the present work, the advantages of this novel technique are investigated: it is shown that cryo-negative staining can generally overcome most of the problems encountered with cryo-electron microscopy of vitrified native suspension of biological particles. The specimens are faithfully represented with a 10-times higher SNR than in the case of unstained samples. Beam-damage is found to be considerably reduced by comparison of multiple-exposure series of both stained and unstained samples. The present report also demonstrates that cryo-negative staining is capable of high- resolution analysis of biological macromolecules. The vitrified stain solution surrounding the sample does not forbid the access to the interna1 features (ie. the secondary structure) of a protein. This finding is of direct interest for the structural biologist trying to combine electron microscopy and X-ray data. developed electron microscopy technique. Finally, several application examples demonstrate the advantages of this newly

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. METHODS: Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. RESULTS: Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. CONCLUSIONS: To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxidation occurs as part of normal regulatory processes, as a defence mechanism against oxidative stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxidation, review the proteomic methodologies applied to analyse redox modifications, and highlight some physiological and in vitro responses to oxidative stress of various blood components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface geological mapping, laboratory measurements of rock properties, and seismic reflection data are integrated through three-dimensional seismic modeling to determine the likely cause of upper crustal reflections and to elucidate the deep structure of the Penninic Alps in eastern Switzerland. Results indicate that the principal upper crustal reflections recorded on the south end of Swiss seismic line NFP20-EAST can be explained by the subsurface geometry of stacked basement nappes. In addition, modeling results provide improvements to structural maps based solely on surface trends and suggest the presence of previously unrecognized rock units in the subsurface. Construction of the initial model is based upon extrapolation of plunging surface. structures; velocities and densities are established by laboratory measurements of corresponding rock units. Iterative modification produces a best fit model that refines the definition of the subsurface geometry of major structures. We conclude that most reflections from the upper 20 km can be ascribed to the presence of sedimentary cover rocks (especially carbonates) and ophiolites juxtaposed against crystalline basement nappes. Thus, in this area, reflections appear to be principally due to first-order lithologic contrasts. This study also demonstrates not only the importance of three-dimensional effects (sideswipe) in interpreting seismic data, but also that these effects can be considered quantitatively through three-dimensional modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼500nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.