29 resultados para 1491
em Université de Lausanne, Switzerland
Exploring Parallels Between Molecular Changes Induced in PNS by Aging and Demyelinating Neuropathies
Resumo:
The peripheral nervous system (PNS) is involved in many age-dependent neurological deficits, including numbness, pain, restless legs, trouble with walking and balance that are commonly found in the elderly. These symptoms generally result from demyelination and/or loss of axonal integrity. However, the precise identity of age-regulated molecular changes in either neuronal or glial compartments of the nerve is unclear. Interestingly, these deficiencies are also present in inherited neuropathies, where the expressivity of the rapid and early onset phenotypes is undeniably more severe than in normal aging. Nevertheless, especially the molecular changes underlying loss of axonal integrity in neuropathy condition are also poorly understood. To unravel molecular mechanisms affected by PNS aging, we used wildtype mice at 17 time-points from day of birth until senescence (28 months-old). For the neuropathy study, we focused on 56 day-old Schwann cell-specific neuropathy-inducing mutants, MPZCre/1/ LpinfE2-3/fE2-3 and MPZCre/1/ScapfE1/fE1 mice, that have, at this age, already developed neuropathic symptoms. Transcriptomes of dissected Schwann cell-containing endoneurium or sensory neuron-containing dorsal root ganglia have been analyzed throughout time or genotypes, using Illumina Bead Chips. Following data validation, we identified groups of differentially expressed genes in the development, aging and in the neuropathic mutants, in both glial and neuronal compartments. We detected substantial differences in the dynamics of changes in gene expression during development and aging between these two compartments. Furthermore, considering the above-mentioned phenotypic similarities, we integrated aging and mutant data. Interestingly, we observed that there are some parallels at the molecular level between processes involved in aging, which leads to less severe and more progressive PNS alterations, and in the rapid onset peripheral neuropathies. Apart from helping the understanding of molecular alterations underlying age-related PNS phenotypes, this data should also contribute to the identification of pathways that could be used as targets for therapeutical approaches to prevent complications associated with both aging and inherited forms of neuropathies.
Resumo:
In the recent years, a tremendous body of studies has addressed a broad variety of distinct topics in clinical allergy and immunology. In this update, we discuss selected recent data that provide clinically and pathogenetically relevant insights or identify potential novel targets and strategies for therapy. The role of the microbiome in shaping allergic immune responses and molecular, as well as cellular mechanisms of disease, is discussed separately and in the context of atopic dermatitis, as an allergic model disease. Besides summarizing novel evidence, this update highlights current areas of uncertainties and debates that, as we hope, shall stimulate scientific discussions and research activities in the field.
Resumo:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.
Resumo:
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Resumo:
One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor, the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca21 -dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte RESTwas variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the wellknown structural/ functional heterogeneity of astrocytes.
Resumo:
Astrocytes are the brain non-nerve cells competent for the expression of clear and dense-core vesicles (DCVs) and for their regulated exocytosis. This process, called gliosecretion, nearly resembles the neurosecretion occurring in neurons and neurosecretory cells. REST/NRSF is a transcription repressor known to orchestrate nerve-cell differentiation, governing the expression of hundreds of neuron-specific genes through their repression in the non-nerve and their fine modulation in the nerve cells. Our previous studies in neurosecretory rat PC12 cells identified REST as the critical factor for the expression not only of individual genes, but also of the whole neurosecretory process via multiple, direct and indirect mechanisms (D'Alessandro et al., J. Neurochem., 2008; Klajn et al., J. Neurosci., 2009). Therefore we wondered whether gliosecretion was governed by REST. We investigated rat astrocyte primary cultures: they exhibited high REST, which directly represses the transcription of at least one target gene, and expressed neither DCVs nor their markers (granins, peptides, membrane proteins). Transfection of a dominant-negative construct of REST (REST/ DBD-GFP) induced the appearance of DCVs filled with secretogranin2 and NPY that are distinct from other intracellular organelles. TIRF analysis of astrocytes co-transfected with REST/DBD-GFP and NPY-mRFP constructs revealed NPY-mRFP-positive DCVs undergoing Ca2þ-dependent exocytosis, largely prevented by BoNT/B. Immunohistochemistry of the I-II layers of the human temporal brain cortex showed all neurons and microglia exhibiting the expected inappreciable and high levels of REST, respectively. In contrast astrocyte RESTwas variable, going from inappreciable to high, accompanied by variable expression of DCVs. In this work it has been demonstrated that astrocyte DCV expression and gliosecretion are governed by REST (Prada et al., 2011 in press). The variable in situ REST levels may contribute to the well known structural/functional heterogeneity of astrocytes and this new observation might be of great interest for the understanding of both astrocyte physiology and pathology.
Resumo:
Astrocytes play a key role in the neurometabolic coupling through the glycogen metabolism and the ''Astrocyte-Neuron Lactate Shuttle'' (ANLS). We previously reported that brain glycogen metabolism was affected by sleep deprivation (SD). Therefore, it is of prime interest to determine if a similar sleep loss also affects the ANLS functioning in astrocytes. To address this issue, we sleep deprived transgenic mice expressing the GFP under the control of the GFAP promoter and in which astrocytes can be isolated by FACS. The levels of expression of genes related to ANLS were assessed by qRT-PCR in the GFP-positive cells (GFPþ). The FVB/NTg( GFAP-GFP)Mes14/j mice were weaned at P20-P21 and underwent an instrumental 6 h SD at P23-P27. The SD was realized using the ''CaResS'' device which has been designed to minimize stress during SD. Control group corresponds to undisturbed mice. At the end of SD, mice were sacrificed and their cerebral cortex was rapidly dissected, cut in small pieces and enzymatically digested. After cell dissociation, GFPþ and GFP- cells were sorted by FACS and treated for RNA extraction. A quantitative RTPCR was realized using specific probes against different genes involved in ANLS. Results indicate that genes encoding the LDHb, the GLT1, the alpha2 subunit of the Na/KATPase pump as well as the GLUT1, were significantly increased in the GFPþ cells from SD mice. No significant change was observed in the GFP- cells from the same group. These results indicate that this approach is suitable to determine the transcriptional signature of SD in glial cells from juvenile animals. They also indicate that sleep loss induces transcriptional changes of genes involved in ANLS specifically in astrocytes. This could suggest that an adaptation of the ANLS at the transcriptional levels exists in pathophysiological conditions where neuronal activity is enhanced.
Resumo:
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.
Resumo:
Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.
Resumo:
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Resumo:
INTRODUCTION: Poststroke hyperglycemia has been associated with unfavorable outcome. Several trials investigated the use of intravenous insulin to control hyperglycemia in acute stroke. This meta-analysis summarizes all available evidence from randomized controlled trials in order to assess its efficacy and safety. METHODS: We searched PubMed until 15/02/2013 for randomized clinical trials using the following search items: 'intravenous insulin' or 'hyperglycemia', and 'stroke'. Eligible studies had to be randomized controlled trials of intravenous insulin in hyperglycemic patients with acute stroke. Analysis was performed on intention-to-treat basis using the Peto fixed-effects method. The efficacy outcomes were mortality and favorable functional outcome. The safety outcomes were mortality, any hypoglycemia (symptomatic or asymptomatic), and symptomatic hypoglycemia. RESULTS: Among 462 potentially eligible articles, nine studies with 1491 patients were included in the meta-analysis. There was no statistically significant difference in mortality between patients who were treated with intravenous insulin and controls (odds ratio: 1.16, 95% confidence interval: 0.89-1.49). Similarly, the rate of favorable functional outcome was not statistically different (odds ratio: 1.01, 95% confidence interval: 0.81-1.26). The rates of any hypoglycemia (odds ratio: 8.19, 95% confidence interval: 5.60-11.98) and of symptomatic hypoglycemia (odds ratio: 6.15, 95% confidence interval: 1.88-20.15) were higher in patients treated with intravenous insulin. There was no heterogeneity across the included trials in any of the outcomes studied. CONCLUSIONS: This meta-analysis of randomized controlled trials does not support the use of intravenous insulin in hyperglycemic stroke patients to improve mortality or functional outcome. The risk of hypoglycemia is increased, however.
Resumo:
More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.
Resumo:
Myelination requires a massive increase in glial cell membrane synthesis. Here we demonstrate that the acute phase of myelin lipid synthesis is regulated by SREBP cleavage activation protein (SCAP), an activator of sterol regulatory element-binding proteins (SREBPs). Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression, congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins promoted myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane. The described defects in SCAP mutant myelination provide new insights into the pathogenesis, and open new avenues for treatment strategies, of peripheral neuropathies associated with lipid metabolic disorders.