2 resultados para 14-OM-01
em Université de Lausanne, Switzerland
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
OBJECTIVE: As universal screening of hypertension performs poorly in childhood, targeted screening to children at higher risk of hypertension has been proposed. Our goal was to assess the performance of combined parental history of hypertension and overweight/obesity to identify children with hypertension. We estimated the sensitivity, specificity, negative and positive predictive values of overweight/obesity and parental history of hypertension for the identification of hypertension in children. DESIGN AND METHOD: We analyzed data from a school-based cross-sectional study including 5207 children aged 10 to 14 years from all public 6th grade classes in the canton of Vaud, Switzerland. Blood pressure was measured with a clinically validated oscillometric automated device over up to three visits separated by one week. Children had hypertension if they had sustained elevated blood pressure over the three visits. Parents were interviewed about their history of hypertension. RESULTS: The prevalence of hypertension was 2.2%. 14% of children were overweight or obese and 20% had a positive history of hypertension in either or both parents. 30% of children had either or both conditions. After accounting for several potential confounding factors, parental history of hypertension (odds ratio (OR): 2.6; 95% confidence interval (CI): 1.8-4.0), overweight excluding obesity (OR: 2.5; 95% CI: 1.5-4.2) and obesity (OR: 10.1; 95% CI: 6.0-17.0) were associated with hypertension in children. Considered in isolation, the sensitivity and positive predictive values of parental history of hypertension (respectively 41% and 5%) or overweight/obesity (respectively 43% and 7%) were relatively low. Nevertheless, considered together, the sensitivity of targeted screening in children with either overweight/obesity or paternal history of hypertension was higher (65%) but the positive predictive value remained low (5%). The negative predictive value was systematically high. CONCLUSIONS: Restricting screening of hypertension to children with either overweight/obesity or with hypertensive parents would substantially limit the proportion of children to screen (30%) and allow the identification of a relatively large proportion (65%) of hypertensive cases. That could be a valuable alternative to universal screening.