21 resultados para [omim][PF6]
em Université de Lausanne, Switzerland
Resumo:
Williams-Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype-phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.
Resumo:
The Al-Awadi-Raas-Rothschild syndrome (AARRS; OMIM 276820) and the Fuhrmann syndrome (FS; OMIM 228930) are distinct limb malformation disorders comprising different degrees of limb aplasia or hypoplasia. In 2006, Woods et al. found different recessive WNT7A mutations in one family segregating the AARRS phenotype and in a second family with FS. To explain the common genetic basis for the two clinically distinct disorders, functional studies were done showing that partial loss of WNT7A function resulted in FS, while complete loss of WNT7A function resulted in the more severe phenotype of AARRS. In spite of the elucidation of the molecular basis of AARRS, there remains to this day considerable diagnostic confusion that has culminated in the lumping of Schinzel phocomelia syndrome with AARRS; however, this phocomelic limb defect is quite different in its clinical aspect and pathogenesis from the limb findings of AARRS. Here, we report on a child with the AARRS phenotype and homozygosity for a non-conservative E72K mutation in WNT7A, underline the homogeneity of the WNT7A-associated AARRS phenotype, and propose differential diagnostic criteria for the AARRS reflecting the roles of WNT7A in limb development.
Resumo:
Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual variability in innate immune response. Current computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency and validated with gene expression data. We integrated these features in a Bayesian classification scheme and benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM) disease stop-gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-based score improves measurement of functional gene impairment, discriminates across different variants in a given gene and appears particularly useful for analysis of less conserved genes.
Resumo:
Cousin syndrome, also called pelviscapular dysplasia (OMIM 260660), is characterized by short stature, craniofacial dysmorphism, and multiple skeletal anomalies. Following its description in two sibs in 1982, no new cases have been observed until the observation of two unrelated cases in 2008 who were homozygous for frameshift mutations in TBX15. We investigated an adult individual with short stature, a complex craniofacial dysmorphism, malformed and rotated ears, short neck, elbow contractures, hypoacusis, and hypoplasia of scapula and pelvis on radiographs. We identified homozygosity for a novel nonsense mutation (c.841C>T) in TBX15 predicted to cause a premature stop (p.Arg281*) with truncation of the protein. This observation confirms that Cousin syndrome is a consistent and clinically recognizable phenotype caused by loss of function of TBX15.
Resumo:
ABSTRACTThe Online Mendelian Inheritance in Man database (OMIM) reports about 3000 Mendelian diseases of known causal gene and about 2000 that remain to be mapped. These cases are often difficult to solve because of the rareness of the disease, the structure of the family (too big or too small) or the heterogeneity of the phenotype. The goal of this thesis is to explore the current genetic tools, before the advent of ultra high throughput sequencing, and integrate them in the attempt to map the genes behind the four studied cases. In this framework we have studied a small family with a recessive disease, a modifier gene for the penetrance of a dominant mutation, a large extended family with a cardiac phenotype and clinical and/or allelic heterogeneity and we have molecularly analyzed a balanced chromosomal translocation.RESUMELa base de données des maladies à transmission mendélienne, Online Mendelian Inheritance in Man (OMIM), contient environ 3000 affections à caractère mendélien pour lesquelles le gène responsable est connu et environ 2000 qui restent à élucider.Les cas restant à résoudre sont souvent difficiles soit par le caractère intrinsèquement rare de ces maladies soit à cause de difficultés structurelles (famille trop petite ou trop étendue) ou hétérogénéité du phénotype ou génétique. Cette thèse s'inscrit avant l'arrivée des nouveaux outils de séquençage à haut débit. Son but est d'explorer les outils génétiques actuels, et de les intégrer pour trouver les gènes impliqués dans quatre cas représentant chacun une situation génétique différente : nous avons étudié une famille de quatre individus avec une transmission récessive, recherché un gène modificateur de la pénétrance de mutations dominantes, étudié une famille étendue présentant un phénotype cardiaque cliniquement et/ou allèliquement hétérogène et nous avons fait l'analyse moléculaire d'une translocation chromosomique balancée.
Resumo:
Patients with defective ectodysplasin A (EDA) have X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM#305100), a condition comprising hypotrichosis, inability to sweat, abnormal teeth, and frequent pulmonary infections. The XLHED dogs show the same clinical signs as humans with the disorder, including frequent respiratory infections that can be fatal. The respiratory disease in humans and dogs is thought to be due to the absence of tracheal and bronchial glands which are a vital part of the mucociliary clearance mechanism. In our XLHED model, the genetically missing EDA was replaced by postnatal intravenous administration of recombinant EDA resulting in long-term, durable corrective effect on adult, permanent dentition. After treatment with EDA, significant correction of the missing tracheal and bronchial glands was achieved in those dogs that received higher doses of EDA. Moreover, successful treatment resulted in the presence of esophageal glands, improved mucociliary clearance, and the absence of respiratory infection. These results demonstrate that a short-term treatment at a neonatal age with a recombinant protein can reverse a developmental disease and result in vastly improved quality of life.
Resumo:
Focal dermal hypoplasia (FDH; Goltz-Gorlin syndrome; OMIM 305600) is a disorder that features involvement of the skin, skeletal system, and eyes. It is caused by loss-of-function mutations in the PORCN gene. We report a young girl with FDH, microphthalmos associated with colobomatous orbital cyst, dural ectasia and cystic malformation of the spinal cord, and a de novo variant in PORCN. This association has not been previously reported, and based on these observations the phenotypic spectrum of FDH might be broader than previously appreciated. It would be prudent to alter the suggested surveillance for this rare disorder. © 2013 Wiley Periodicals, Inc.
Resumo:
Background Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Methods Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). Results The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. Conclusions It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.
Resumo:
Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD; OMIM 613330) is a dysostosis/dysplasia caused by recessive mutations in the homeobox-containing gene, NKX3-2 (formerly known as BAPX1). Because of the rarity of the condition, its diagnostic features and natural course are not well known. We describe clinical and radiographic findings in six patients (five of which with homozygous mutations in the NKX3-2 gene) and highlight the unusual and severe changes in the cervical spine and the neurologic complications. In individuals with SMMD, the trunk and the neck are short, while the limbs, fingers and toes are disproportionately long. Radiographs show a severe ossification delay of the vertebral bodies with sagittal and coronal clefts, missing ossification of the pubic bones, large round "balloon-like" epiphyses of the long bones, and presence of multiple pseudoepiphyses at all metacarpals and phalanges. Reduced or absent ossification of the cervical vertebrae leads to cervical instability with anterior or posterior kinking of the cervical spine (swan neck-like deformity, kyknodysostosis). As a result of the cervical spine instability or deformation, five of six patients in our series suffered cervical cord injury that manifested clinically as limb spasticity. Although the number of individuals observed is small, the high incidence of cervical spine deformation in SMMD is unique among skeletal dysplasias. Early diagnosis of SMMD by recognition of the radiographic pattern might prevent of the neurologic complications via prophylactic cervical spine stabilization. © 2012 Wiley Periodicals, Inc.
Resumo:
Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and moderate short stature. Its molecular basis and nosologic status remained unknown. We followed up on those individuals and diagnosed the disorder in an additional member of the family. We used exome sequencing to ascertain the underlying mutation and explored its consequences on three-dimensional models of the affected protein. The MDST phenotype is associated with moderate short stature and knee pain in adults, while extra-skeletal complications are not observed. The sequencing showed that MDST segregated with a c.619T>G single nucleotide transversion in MMP13. The predicted non-conservative amino acid substitution, p.Trp207Gly, disrupts a crucial hydrogen bond in the calcium-binding region of the catalytic domain of the matrix metalloproteinase, MMP13. The MDST phenotype is associated with recessive MMP13 mutations, confirming the importance of this metalloproteinase in the metaphyseal growth plate. Dominant MMP13 mutations have been associated with metaphyseal anadysplasia (OMIM 602111), while a single child homozygous for a MMP13 mutation had been previously diagnosed as "recessive metaphyseal anadysplasia," that we conclude is the same nosologic entity as MDST. Molecular confirmation of MDST allows distinction of it from dominant conditions (e.g., metaphyseal dysplasia, Schmid type; OMIM # 156500) and from more severe multi-system conditions (such as cartilage-hair hypoplasia; OMIM # 250250) and to give precise recurrence risks and prognosis. © 2014 Wiley Periodicals, Inc.
Resumo:
Multiple Sulfatase Deficiency (MSD; OMIM 272200) is a rare autosomal recessive inborn error of metabolism caused by mutations in the sulfatase modifying factor 1 gene, encoding the formyglycine-generating enzyme (FGE), and resulting in tissue accumulation of sulfatides, sulphated glycosaminoglycans, sphingolipids and steroid sulfates. Less than 50 cases have been published so far. We report a new case of MSD presenting in the newborn period with hypotonia, apnoea, cyanosis and rolling eyes, hepato-splenomegaly and deafness. This patient was compound heterozygous for two so far undescribed SUMF1 mutations (c.191C¿>¿A; p.S64X and c.818A¿>¿G; p.D273G).
Resumo:
The Simpson-Golabi-Behmel syndrome type 1 (SGBS1, OMIM #312870) is an X-linked overgrowth condition comprising abnormal facial appearance, supernumerary nipples, congenital heart defects, polydactyly, fingernail hypoplasia, increased risk of neonatal death and of neoplasia. It is caused by mutation/deletion of the GPC3 gene. We describe a macrosomic 27-week preterm newborn with SGBS1 who presents a novel GPC3 mutation and emphasize the phenotypic aspects which allow a correct diagnosis neonatally in particular the rib malformations, hypoplasia of index finger and of the same fingernail, and 2nd-3rd finger syndactyly.
Resumo:
Individuals harboring germ-line DICER1 mutations are predisposed to a rare cancer syndrome, the DICER1 Syndrome or pleuropulmonary blastoma-familial tumor and dysplasia syndrome [online Mendelian inheritance in man (OMIM) #601200]. In addition, specific somatic mutations in the DICER1 RNase III catalytic domain have been identified in several DICER1-associated tumor types. Pituitary blastoma (PitB) was identified as a distinct entity in 2008, and is a very rare, potentially lethal early childhood tumor of the pituitary gland. Since the discovery by our team of an inherited mutation in DICER1 in a child with PitB in 2011, we have identified 12 additional PitB cases. We aimed to determine the contribution of germ-line and somatic DICER1 mutations to PitB. We hypothesized that PitB is a pathognomonic feature of a germ-line DICER1 mutation and that each PitB will harbor a second somatic mutation in DICER1. Lymphocyte or saliva DNA samples ascertained from ten infants with PitB were screened and nine were found to harbor a heterozygous germ-line DICER1 mutation. We identified additional DICER1 mutations in nine of ten tested PitB tumor samples, eight of which were confirmed to be somatic in origin. Seven of these mutations occurred within the RNase IIIb catalytic domain, a domain essential to the generation of 5p miRNAs from the 5' arm of miRNA-precursors. Germ-line DICER1 mutations are a major contributor to PitB. Second somatic DICER1 "hits" occurring within the RNase IIIb domain also appear to be critical in PitB pathogenesis.
Resumo:
We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study.
Resumo:
Axial spondylometaphyseal dysplasia (SMD) (OMIM 602271) is an uncommon skeletal dysplasia characterized by metaphyseal changes of truncal-juxtatruncal bones, including the proximal femora, and retinal abnormalities. The disorder has not attracted much attention since initially reported; however, it has been included in the nosology of genetic skeletal disorders [Warman et al. (2011); Am J Med Genet Part A 155A:943-968] in part because of a recent publication of two additional cases [Isidor et al. (2010); Am J Med Genet Part A 152A:1550-1554]. We report here on the clinical and radiological manifestations in seven affected individuals from five families (three sporadic cases and two familial cases). Based on our observations and Isidor's report, the clinical and radiological hallmarks of axial SMD can be defined: The main clinical findings are postnatal growth failure, rhizomelic short stature in early childhood evolving into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and function rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on fundoscopic examination and cone-rod dystrophy on electroretinogram. The radiological hallmarks include short ribs with flared, cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. Equally affected sibling pairs of opposite gender and parental consanguinity are strongly suggestive of autosomal recessive inheritance. © 2011 Wiley-Liss, Inc.