139 resultados para tectonic history
Resumo:
BACKGROUND: Although medical and travel plans gathered from pre-travel interviews are used to decide the provision of specific pre-travel health advice and vaccinations, there has been no evaluation of the relevance of this strategy. In a prospective study, we assessed the agreement between pre-travel plans and post-travel history and the effect on advice regarding the administration of vaccines and recommendations for malaria prevention. METHODS: We included prospectively all consenting adults who had not planned an organized tour. Pre- and post-travel information included questions on destination, itineraries, departure and return dates, access to bottled water, plan of bicycle ride, stays in a rural zone, and close contact with animals. The outcomes measured included: agreement between pre- and post-travel itineraries and activities; and the effect of these differences on pre-travel health recommendations, had the traveler gone to the actual versus intended destinations for actual versus intended duration and activities. RESULTS: Three hundred and sixty-five travelers were included in the survey, where 188 (52%) were males (median age 38 years). In 81(23%) travelers, there was no difference between pre- and post-travel history. Disagreement between pre- and post-travel history were the highest for stays in rural zones or with local people (66% of travelers), close contact with animals (33%), and bicycle riding (21%). According to post-travel history, 125 (35%) travelers would have needed rabies vaccine and 9 (3%) typhoid fever vaccine. Potential overprovision of vaccine was found in <2% of travelers. A change in the malaria prescription would have been recommended in 18 (5%) travelers. CONCLUSIONS: Pre-travel history does not adequately reflect what travelers do. However, difference between recommendations for the actual versus intended travel plans was only clinically significant for the need for rabies vaccine. Particular attention during pre-travel health counseling should focus on the risk of rabies, the need to avoid close contact with animals and to seek care for post-exposure prophylaxis following an animal bite.
Resumo:
The Talea Ori unit is the lowermost known tectonic unit of Crete and the most external part of the Hellenides. Its stratigraphy ranges from Late Carboniferous to Oligocene and outcrops of the lower part are only known in the Talea Ori mountains (central Crete). In this area, a black sandstone at the base of the Galinos Beds, thought to be the oldest formation, contains zircons which were dated using the single grain evaporation method. The majority of these grains yielded Late Carboniferous ages (Variscan), while a small group yielded Early Proterozoic ages. The age distribution of these zircons suggests that, at the Carboniferous-Permian boundary, not much of the older North Gondwanan basement was exposed and that a river system carried detrital material from the Variscan belt towards the forming Neotethyan rift. Additionally, higher up in the stratigraphy benthic foraminifers (miliolids) were found in clasts from a conglomerate which was so far thought to be of Early Triassic age [Epting, M., Kudrass, H.-R., Leppig, U., Schaffer, A., 1972. Geologie der Talea Ori/Kreta. N. Jb. Geol. Palaont. Abh. 141, 259-285.]. These miliolids belong to the species Hoyenella inconstans [Michalik, J., Jendrejakova, O., Borza, K., 1979. Some new foraminifera species of the Fatra-Formation (Uppermost Triassic) in the West Carpathians. Geol. Carpath. 30 (1), 61-91.], thus attributing a Late Triassic (Carnian-Norian?) maximal age to this conglomerate. The carbonate platform from which the miliolids-bearing clasts come is not known. The presence to the north of a continuous hemipelagic record from the Carboniferous to the Triassic (Phyllite-Quartzite and Tripali units), attributed to the Palaeotethys realm, allows the Talea Ori unit and its lateral equivalents (the Ionian zone) to be assigned to the westward continuation of the Cimmerian block and therefore to the northern margin of the East Mediterranean Neotethys ocean. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bioterrorism literally means using microorganisms or infected samples to cause terror and panic in populations. Bioterrorism had already started 14 centuries before Christ, when the Hittites sent infected rams to their enemies. However, apart from some rare well-documented events, it is often very difficult for historians and microbiologists to differentiate natural epidemics from alleged biological attacks, because: (i) little information is available for times before the advent of modern microbiology; (ii) truth may be manipulated for political reasons, especially for a hot topic such as a biological attack; and (iii) the passage of time may also have distorted the reality of the past. Nevertheless, we have tried to provide to clinical microbiologists an overview of some likely biological warfare that occurred before the 18th century and that included the intentional spread of epidemic diseases such as tularaemia, plague, malaria, smallpox, yellow fever, and leprosy. We also summarize the main events that occurred during the modern microbiology era, from World War I to the recent 'anthrax letters' that followed the World Trade Center attack of September 2001. Again, the political polemic surrounding the use of infectious agents as a weapon may distort the truth. This is nicely exemplified by the Sverdlovsk accident, which was initially attributed by the authorities to a natural foodborne outbreak, and was officially recognized as having a military cause only 13 years later.
Resumo:
Only limited data is available on the relationship between family history of laryngeal and other neoplasms and laryngeal cancer risk. We investigated the issue using data from a multicentre case-control study conducted in Italy and Switzerland between 1992 and 2009 including 852 cases with histologically confirmed laryngeal cancer and 1970 controls admitted to hospital for acute, non neoplastic conditions. Unconditional logistic regression models adjusted for age, sex, study center, education, tobacco smoking, alcohol drinking and number of siblings were used to estimate the odds ratios (ORs) of laryngeal cancer. The multivariate OR was 2.8 (95% confidence interval [CI], 1.5-5.3) in subjects reporting a first-degree relative with laryngeal cancer, as compared to subjects with no family history. The OR was higher when the relative was diagnosed before 60 years of age (OR = 3.5, 95% CI 1.4-8.8). As compared to subjects without family history, non-smokers, and moderate drinkers, the OR was 37.1 (95% CI 9.9-139.4) for current smokers, heavy drinkers, with family history of laryngeal cancer. Family history of colorectal (OR = 1.5, 95% CI 1.0-2.3) and kidney (OR = 3.8, 95% CI 1.2-12.1) cancer were also associated to an increased risk of laryngeal cancer, while no significant increase in risk was found for family history of cancer at all sites, excluding the larynx (OR = 1.1).
Resumo:
OBJECTIVES: Depression has been consistently reported in people with epilepsy. Several studies also suggest a higher burden of cardiovascular diseases. We therefore analysed psychosocial co-morbidity and cardiovascular risk factors in patients with a lifetime history of epilepsy in the PsyCoLaus study, a Swiss urban population-based assessment of mental health and cardiovascular risk factors in adults aged between 35 and 66 years. PATIENTS AND METHODS: Among 3719 participants in the PsyCoLaus study, we retrospectively identified those reporting at least 2 unprovoked seizures, defined as epilepsy. These subjects were compared to all others regarding psychiatric, social, and cardiovascular risk factors data using uni- and multivariable assessments. RESULTS: A significant higher need for social help (p<0.001) represented the only independent difference between 43 subjects with a history of epilepsy and 3676 controls, while a higher prevalence of psychiatric co-morbidities (p=0.015) and a lower prevalent marital status (p=0.01) were only significant on univariate analyses. Depression and cardio-vascular risk factors, as well as educational level and employment, were similar among the groups. CONCLUSIONS: This analysis confirms an increased prevalence of psychosocial burden in subjects with a lifetime history of epilepsy; conversely, we did not find a higher cardiovascular risk. The specific urban and geographical location of our cohort and the age span of the studied population may account for the differences from previous studies.
Resumo:
The common shrew (Sorex araneus) is subdivided into numerous chromosome races. The Valais and Cordon chromosome races meet and hybridize at a mountain river in Les Houches (French Alps). Significant genetic structuring was recently reported among populations found on the Valais side of this hybrid zone. In this paper, a phylogenetic analysis and partial Mantel tests are used to investigate the patterns and causes of this structuring. A total of 185 shrews were trapped at 12 localities. All individuals were typed for nine microsatellite loci. Although several mountain rivers are found in the study area, riverine barriers do not have a significant influence on gene flow. Partial Mantel tests show that our result is caused by the influence of the hybrid zone with the Cordon race. The geographical patterns of this structuring are discussed in the context of the contact zone, which appears to extend up to a group of two rivers. The glacier they originate from is known to have cut the Arve valley as recently as 1818. The recent history of this glacier, its moraine and possibly rivers, may therefore be linked to the history of this hybrid zone.
Resumo:
The Late Triassic and Jurassic platform and the oceanic complexes in Evvoia, Greece, share a complementary plate-tectonic evolution. Shallow marine carbonate deposition responded to changing rates of subsidence and uplift, whilst the adjacent ocean underwent spreading, and then convergence, collision and finally obduction over the platform complex. Late Triassic ocean spreading correlated with platform subsidence and the formation of a long-persisting peritidal passive-margin platform. Incipient drowning occurred from the Sinemurian to the late Middle Jurassic. This subsidence correlated with intra-oceanic subduction and plate convergence that led to supra-subduction calc-alkaline magmatism and the formation of a primitive volcanic arc. During the Middle Jurassic, plate collision caused arc uplift above the carbonate compensation depth (CCD) in the oceanic realm, and related thrust-faulting, on the platform, led to sub-aerial exposures. Patch-reefs developed there during the Late Oxfordian to Kimmeridgian. Advanced oceanic nappe-loading caused platform drowning below the CCD during the Tithonian, which is documented by intercalations of reefal turbidites with non-carbonate radiolarites. Radiolarites and bypass-turbidites, consisting of siliciclastic greywacke, terminate the platform succession beneath the emplaced oceanic nappe during late Tithonian to Valanginian time.
Resumo:
This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.
Resumo:
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.