139 resultados para sleep disturbances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Obstructive sleep apnea is associated with significantly increased cardiovascular morbidity and mortality. Fluid overload may promote obstructive sleep apnea in patients with ESRD through an overnight fluid shift from the legs to the neck soft tissues. Body fluid shift and severity of obstructive sleep apnea before and after hemodialysis were compared in patients with ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Seventeen patients with hemodialysis and moderate to severe obstructive sleep apnea were included. Polysomnographies were performed the night before and after hemodialysis to assess obstructive sleep apnea, and bioimpedance was used to measure fluid overload and leg fluid volume. RESULTS: The mean overnight rostral fluid shift was 1.27±0.41 L prehemodialysis; it correlated positively with fluid overload volume (r=0.39; P=0.02) and was significantly lower posthemodialysis (0.78±0.38 L; P<0.001). There was no significant difference in the mean obstructive apnea-hypopnea index before and after hemodialysis (46.8±22.0 versus 42.1±18.6 per hour; P=0.21), but obstructive apnea-hypopnea index was significantly lower posthemodialysis (-10.1±10.8 per hour) in the group of 12 patients, with a concomitant reduction of fluid overload compared with participants without change in fluid overload (obstructive apnea-hypopnea index +8.2±16.1 per hour; P<0.01). A lower fluid overload after hemodialysis was significantly correlated (r=0.49; P=0.04) with a lower obstructive apnea-hypopnea index. Fluid overload-assessed by bioimpedance-was the best predictor of the change in obstructive apnea-hypopnea index observed after hemodialysis (standardized r=-0.68; P=0.01) in multivariate regression analysis. CONCLUSIONS: Fluid overload influences overnight rostral fluid shift and obstructive sleep apnea severity in patients with ESRD undergoing intermittent hemodialysis. Although no benefit of hemodialysis on obstructive sleep apnea severity was observed in the whole group, the change in obstructive apnea-hypopnea index was significantly correlated with the change in fluid overload after hemodialysis. Moreover, the subgroup with lower fluid overload posthemodialysis showed a significantly lower obstructive sleep apnea severity, which provides a strong incentive to further study whether optimizing fluid status in patients with obstructive sleep apnea and ESRD will improve the obstructive apnea-hypopnea index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Previous observations found a high prevalence of obstructive sleep apnea (OSA) in the hemodialysis population, but the best diagnostic approach remains undefined. We assessed OSA prevalence and performance of available screening tools to propose a specific diagnostic algorithm. Methods. 104 patients from 6 Swiss hemodialysis centers underwent polygraphy and completed 3 OSA screening scores: STOP-BANG, Berlin's Questionnaire, and Adjusted Neck Circumference. The OSA predictors were identified on a derivation population and used to develop the diagnostic algorithm, which was validated on an independent population. Results. We found 56% OSA prevalence (AHI ≥ 15/h), which was largely underdiagnosed. Screening scores showed poor performance for OSA screening (ROC areas 0.538 [SE 0.093] to 0.655 [SE 0.083]). Age, neck circumference, and time on renal replacement therapy were the best predictors of OSA and were used to develop a screening algorithm, with higher discriminatory performance than classical screening tools (ROC area 0.831 [0.066]). Conclusions. Our study confirms the high OSA prevalence and highlights the low diagnosis rate of this treatable cardiovascular risk factor in the hemodialysis population. Considering the poor performance of OSA screening tools, we propose and validate a specific algorithm to identify hemodialysis patients at risk for OSA for whom further sleep investigations should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Although sleep is a biomarker for general health and pathological conditions, its changes across age and gender are poorly understood. METHODS: Subjective evaluation of sleep was assessed by questionnaires in 5,064 subjects, and 2,966 were considered without sleep disorders. Objective evaluation was performed by polysomnography in 2,160 subjects, and 1,147 were considered without sleep disorders. Only subjects without sleep disorders were included (aged 40-80 years). RESULTS: Aging was strongly associated with morning preference. Older subjects, especially women, complained less about sleepiness, and pathological sleepiness was significantly lower than in younger subjects. Self-reported sleep quality and daytime functioning improved with aging. Sleep latency increased with age in women, while sleep efficiency decreased with age in both genders. Deep slow-wave sleep decreased with age, but men were more affected. Spectral power densities within slow waves (< 5 Hz) and fast spindles (14-14.75 Hz) decreased, while theta-alpha (5-1 Hz) and beta (16.75-25 Hz) power in non-rapid eye movement sleep increased with aging. In REM sleep, aging was associated with a progressive decrease in delta (1.25-4.5 Hz) and increase in higher frequencies. CONCLUSIONS: Our findings indicate that sleep complaints should not be viewed as part of normal aging but should prompt the identification of underlying causes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The aim of this study was to evaluate if there is a significant effect of lunar phases on subjective and objective sleep variables in the general population. METHODS: A total of 2125 individuals (51.2% women, age 58.8 ± 11.2 years) participating in a population-based cohort study underwent a complete polysomnography (PSG) at home. Subjective sleep quality was evaluated by a self-rating scale. Sleep electroencephalography (EEG) spectral analysis was performed in 759 participants without significant sleep disorders. Salivary cortisol levels were assessed at awakening, 30 min after awakening, at 11 am, and at 8 pm. Lunar phases were grouped into full moon (FM), waxing/waning moon (WM), and new moon (NM). RESULTS: Overall, there was no significant difference between lunar phases with regard to subjective sleep quality. We found only a nonsignificant (p = 0.08) trend toward a better sleep quality during the NM phase. Objective sleep duration was not different between phases (FM: 398 ± 3 min, WM: 402 ± 3 min, NM: 403 ± 3 min; p = 0.31). No difference was found with regard to other PSG-derived parameters, EEG spectral analysis, or in diurnal cortisol levels. When considering only subjects with apnea/hypopnea index of <15/h and periodic leg movements index of <15/h, we found a trend toward shorter total sleep time during FM (FM: 402 ± 4, WM: 407 ± 4, NM: 415 ± 4 min; p = 0.06) and shorter-stage N2 duration (FM: 178 ± 3, WM: 182 ± 3, NM: 188 ± 3 min; p = 0.05). CONCLUSION: Our large population-based study provides no evidence of a significant effect of lunar phases on human sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, evidence has emerged for a bidirectional relationship between sleep and neurological and psychiatric disorders. First, sleep-wake disorders (SWDs) are very common and may be the first/main manifestation of underlying neurological and psychiatric disorders. Secondly, SWDs may represent an independent risk factor for neuropsychiatric morbidities. Thirdly, sleep-wake function (SWF) may influence the course and outcome of neurological and psychiatric disorders. This review summarizes the most important research and clinical findings in the fields of neuropsychiatric sleep and circadian research and medicine, and discusses the promise they bear for the next decade. The findings herein summarize discussions conducted in a workshop with 26 European experts in these fields, and formulate specific future priorities for clinical practice and translational research. More generally, the conclusion emerging from this workshop is the recognition of a tremendous opportunity offered by our knowledge of SWF and SWDs that has unfortunately not yet entered as an important key factor in clinical practice, particularly in Europe. Strengthening pre-graduate and postgraduate teaching, creating academic multidisciplinary sleep-wake centres and simplifying diagnostic approaches of SWDs coupled with targeted treatment strategies yield enormous clinical benefits for these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that shorter sleep durations and greater variability in sleep patterns are associated with weight gain in the first semester of university. Students (N = 132) completed daily sleep diaries for 9 weeks, completed the MEQ (chronotype) and CES-D (depressed mood) at week 9, and self-reported weight/height (weeks 1 & 9). Mean and variability scores were calculated for sleep duration (TST, TSTv), bedtime (BT, BTv), and wake time (WT, WTv). An initial hierarchical regression evaluated (block 1) sex, ethnicity; (block 2) depressed mood, chronotype; (block 3) TST; (block 4) BT, WT; and (block 5; R(2) change = 0.09, p = 0.005) TSTv, BTv, WTv with weight change. A sex-by-TSTv interaction was found. A final model showed that ethnicity, TST, TSTv, and BTv accounted for 31% of the variance in weight change for males; TSTv was the most significant contributor (R(2) change = 0.21, p < 0.001). Daily variability in sleep duration contributes to males' weight gain. Further investigation needs to examine sex-specific outcomes for sleep and weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Previous observations found a high prevalence of obstructive sleep apnea (OSA) in the hemodialysis population, but the best diagnostic approach remains undefined. We assessed OSA prevalence and performance of available screening tools to propose a specific diagnostic algorithm. METHODS: 104 patients from 6 Swiss hemodialysis centers underwent polygraphy and completed 3 OSA screening scores: STOP-BANG, Berlin's Questionnaire, and Adjusted Neck Circumference. The OSA predictors were identified on a derivation population and used to develop the diagnostic algorithm, which was validated on an independent population. RESULTS: We found 56% OSA prevalence (AHI ≥ 15/h), which was largely underdiagnosed. Screening scores showed poor performance for OSA screening (ROC areas 0.538 [SE 0.093] to 0.655 [SE 0.083]). Age, neck circumference, and time on renal replacement therapy were the best predictors of OSA and were used to develop a screening algorithm, with higher discriminatory performance than classical screening tools (ROC area 0.831 [0.066]). CONCLUSIONS: Our study confirms the high OSA prevalence and highlights the low diagnosis rate of this treatable cardiovascular risk factor in the hemodialysis population. Considering the poor performance of OSA screening tools, we propose and validate a specific algorithm to identify hemodialysis patients at risk for OSA for whom further sleep investigations should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of a large populationbased sample who underwent full polysomnography at home (HypnoLaus cohort), we recently reported that 49·7% of men and 23·4% of women aged 40 years or older had an apnoea-hypopnoea index of 15 events per h or more1 according to the American Academy of Sleep Medicine (AASM) 2013 scoring criteria. When excessive daytime sleepiness (ie, Epworth score >10 [maximum score 24]) was included in the definition with an apnoea-hypopnoea index of 5 events per h or more, the prevalence was 12·5% in men and 5·9% in women. This high prevalence of sleep disordered breathing reinforced the idea that the treatment decision should not only be based the apnoeahypopnoea index, but should also take into account associated symptoms and cardiovascular and metabolic comorbidities. After this Article was published, several readers contacted us to ask for the prevalence of sleep apnoea syndrome in our sample according to the International Classification of Sleep Disorders (ICSD-3) criteria. These criteria include either the presence of an apnoea-hypopnoea index of 5 events per h or more associated with obstructive sleep apnoearelated symptoms or cardiovascular and metabolic comorbidities, or an apnoea-hypopnoea index of 15 events per h or more (figure).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, for most biological and physiological phenomena, the scientific community has reach a consensus on their related function, except for sleep, which has an undetermined, albeit mystery, function. To further our understanding of sleep function(s), we first focused on the level of complexity at which sleep-like phenomenon can be observed. This lead to the development of an in vitro model. The second approach was to understand the molecular and cellular pathways regulating sleep and wakefulness, using both our in vitro and in vivo models. The third approach (ongoing) is to look across evolution when sleep or wakefulness appears. (1) To address the question as to whether sleep is a cellular property and how this is linked to the entire brain functioning, we developed a model of sleep in vitro by using dissociated primary cortical cultures. We aimed at simulating the major characteristics of sleep and wakefulness in vitro. We have shown that mature cortical cultures display a spontaneous electrical activity similar to sleep. When these cultures are stimulated by waking neurotransmitters, they show a tonic firing activity, similar to wakefulness, but return spontaneously to the "sleep-like" state 24h after stimulation. We have also shown that transcriptional, electrophysiological, and metabolic correlates of sleep and wakefulness can be reliably detected in dissociated cortical cultures. (2) To further understand at which molecular and cellular levels changes between sleep and wakefulness occur, we have used a pharmacological and systematic gene transcription approach in vitro and discovered a major role played by the Erk pathway. Indeed, pharmacological inhibition of this pathway in living animals decreased sleep by 2 hours per day and consolidated both sleep and wakefulness by reducing their fragmentation. (3) Finally, we tried to evaluate the presence of sleep in one of the most primitive species with a neural network. We set up Hydra as a model organism. We hypothesized that sleep as a cellular (neuronal) property may occur with the appearance of the most primitive nervous system. We were able to show that Hydra have periodic rest phases amounting to up to 5 hours per day. In conclusion, our work established an in vitro model to study sleep, discovered one of the major signaling pathways regulating vigilance states, and strongly suggests that sleep is a cellular property highly conserved at the molecular level during evolution. -- Jusqu'à ce jour, la communauté scientifique s'est mise d'accord sur la fonction d'une majorité des processus physiologiques, excepté pour le sommeil. En effet, la fonction du sommeil reste un mystère, et aucun consensus n'est atteint le concernant. Pour mieux comprendre la ou les fonctions du sommeil, (1) nous nous sommes d'abord concentré sur le niveau de complexité auquel un état ressemblant au sommeil peut être observé. Nous avons ainsi développé un modèle du sommeil in vitro, (2) nous avons disséqué les mécanismes moléculaires et cellulaires qui pourraient réguler le sommeil, (3) nous avons cherché à savoir si un état de sommeil peut être trouvé dans l'hydre, l'animal le plus primitif avec un système nerveux. (1) Pour répondre à la question de savoir à quel niveau de complexité apparaît un état de sommeil ou d'éveil, nous avons développé un modèle du sommeil, en utilisant des cellules dissociées de cortex. Nous avons essayé de reproduire les corrélats du sommeil et de l'éveil in vitro. Pour ce faire, nous avons développé des cultures qui montrent les signes électrophysiologiques du sommeil, puis quand stimulées chimiquement passent à un état proche de l'éveil et retournent dans un état de sommeil 24 heures après la stimulation. Notre modèle n'est pas parfait, mais nous avons montré que nous pouvions obtenir les corrélats électrophysiologiques, transcriptionnels et métaboliques du sommeil dans des cellules corticales dissociées. (2) Pour mieux comprendre ce qui se passe au niveau moléculaire et cellulaire durant les différents états de vigilance, nous avons utilisé ce modèle in vitro pour disséquer les différentes voies de signalisation moléculaire. Nous avons donc bloqué pharmacologiquement les voies majeures. Nous avons mis en évidence la voie Erkl/2 qui joue un rôle majeur dans la régulation du sommeil et dans la transcription des gènes qui corrèlent avec le cycle veille-sommeil. En effet, l'inhibition pharmacologique de cette voie chez la souris diminue de 2 heures la quantité du sommeil journalier et consolide l'éveil et le sommeil en diminuant leur fragmentation. (3) Finalement, nous avons cherché la présence du sommeil chez l'Hydre. Pour cela, nous avons étudié le comportement de l'Hydre pendant 24-48h et montrons que des périodes d'inactivité, semblable au sommeil, sont présentes dans cette espèce primitive. L'ensemble de ces travaux indique que le sommeil est une propriété cellulaire, présent chez tout animal avec un système nerveux et régulé par une voie de signalisation phylogénétiquement conservée.