131 resultados para single-stranded DNA
Resumo:
Les larves aquatiques d'éphémères (Ephemeroptera) colonisent toutes les eaux douces du monde et sont couramment utilisées comme bio-indicateurs de la qualité de l'eau. Le genre Rhithrogena (Heptageniidae) est le deuxième plus diversifié chez les éphémères, et plusieurs espèces européennes ont une distribution restreinte dans des environnements alpins sensibles. Les espèces de Rhithrogena ont été classées en "groupes d'espèces" faciles à identifier. Cependant, malgré leur importance écologique et en terme de conservation, beaucoup d'espèces présentent des différences morphologiques ambiguës, suggérant que lataxonomie actuelle ne refléterait pas correctement leur diversité évolutive. De plus, aucune information sur leurs relations, leur origine, le taux de spéciation ou les mécanismes ayant provoqué leur remarquable diversification dans les Alpes n'est disponible. Nous avons d'abord examiné le statut spécifique d'environ 50% des espèces européennes de Rhithrogena en utilisant un large échantillonnage de populations alpines incluant 22 localités typiques, ainsi qu'une analyse basée sur le modèle général mixte de Yule et de coalescence (GMYC) appliqué à un gène mitochondrial standard (coxl) et à un gène nucléaire développé spécifiquement pour cette étude. Nous avons observé un regroupement significatif des séquences coxl en 31 espèces potentielles, et nos résultats ont fortement suggéré la présence d'espèces cryptiques et de fractionnements taxonomiques excessifs chez les Rhithrogena. Nos analyses phylogénétiques ont démontré la monophylie de quatre des six groupes d'espèces reconnus présents dans notre échantillonnage. La taxonomie ADN développée dans cette étude pose les bases d'une future révision de ce genre important mais cryptique en Europe. Puis nous avons mené une étude phylogénétique multi-gènes entre les espèces européennes de Rhithrogena. Les données provenant de trois gènes nucléaires et de deux gènes mitochondriaux ont été largement concordantes, et les relations entre les espèces bien résolues au sein de la plupart des groupes d'espèces dans une analyse combinant tous les gènes. En l'absence de points de calibration extérieurs tels que des fossiles, nous avons appliqué à nos données mitochondriales une horloge moléculaire standard pour les insectes, suggérant une origine des Rhithrogena alpins à la limite Oligocène / Miocène. Nos résultats ont montré le rôle prépondérant qu'ont joué les glaciations du quaternaire dans leur diversification, favorisant la spéciation d'au moins la moitié des espèces actuelle dans les Alpes. La biodiversité et le taux d'endémisme à Madagascar, notamment au niveau de la faune des eaux douces, sont parmi les plus extraordinaires et les plus menacés au monde. On pense que beaucoup d'espèces d'éphémères sont restreintes à un seul bassin versant (microendémisme) dans les zones forestières, ce qui les rendrait particulièrement sensibles à la réduction et à la dégradation de leur habitat. Mis à part deux espèces décrites, Afronurus matitensis et Compsoneuria josettae, les Heptageniidae sont pratiquement inconnus à Madagascar. Les deux genres ont une distribution discontinue en Afrique, à Madagascar et en Asie du Sud-Est, et leur taxonomie complexe est régulièrement révisée. L'approche standard pour comprendre leur diversité, leur endémisme et leur origine requerrait un échantillonnage étendu sur plusieurs continents et des années de travaux taxonomiques. Pour accélérer le processus, nous avons utilisé des collections de musées ainsi que des individus fraîchement collectés, et appliqué une approche combinant taxonomie ADN et phylogénie. L'analyses GMYC du gène coxl a délimité 14 espèces potentielles à Madagascar, dont 70% vraisemblablement microendémiques. Une analyse phylogénique incluant des espèces africaines et asiatiques portant sur deux gènes mitochondriaux et quatre gènes nucléaires a montré que les Heptageniidae malgaches sont monophylétiques et groupe frère des Compsoneuria africains. L'existence de cette lignée unique, ainsi qu'un taux élevé de microendémisme, mettent en évidence leur importance en terme de conservation. Nos résultats soulignent également le rôle important que peuvent jouer les collections de musées dans les études moléculaires et en conservation. - Aquatic nymphs of mayflies (Ephemeroptera) colonize all types of freshwaters throughout the world and are extensively used as bio-indicators of water quality. Rhithrogena (Heptageniidae) is the second most species-rich genus of mayflies, and several European species have restricted distributions in sensitive Alpine environments and therefore are of conservation interest. The European Rhithrogena species are arranged into "species groups" that are easily identifiable. However, despite their ecological and conservation importance, ambiguous morphological differences among many species suggest that the current taxonomy may not accurately reflect their evolutionary diversity. Moreover, no information about their relationships, origin, timing of speciation and mechanisms promoting their successful diversification in the Alps is available. We first examined the species status of ca. 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule- coalescent (GMYC) model analysis of one standard mitochondrial (coxl) and one newly developed nuclear marker. We observed significant clustering of coxl into 31 GMYC species, and our results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Phylogenetic analyses recovered four of the six recognized species groups in our samples as monophyletic. The DNA taxonomy developed here lays the groundwork for a future revision of this important but cryptic genus in Europe. Then we conducted a species-level, multiple-gene phylogenetic study of European Rhithrogena. Data from three nuclear and two mitochondrial loci were broadly congruent, and species-level relationships were well resolved within most species groups in a combined analysis. In the absence of external calibration points like fossils, we applied a standard insect molecular clock hypothesis to our mitochondrial data, suggesting an origin of Alpine Rhithrogena in the Oligocene / Miocene boundary. Our results highlighted the preponderant role that quaternary glaciations played in their diversification, promoting speciation of at least half of the current diversity in the Alps. Madagascar's biodiversity and endemism are among the most extraordinary and endangered in the world. This includes the island's freshwater biodiversity, although detailed knowledge of the diversity, endemism, and biogeographic origin of freshwater invertebrates is lacking. Many mayfly species are thought to be restricted to single river basins (microendemic species) in forested areas, making them particularly sensitive to habitat reduction and degradation. The Heptageniidae are practically unknown in Madagascar except for two described species, Afronurus matitensis and Compsoneuria josettae. Both genera have a disjunct distribution in Africa, Madagascar and Southeast Asia, and a complex taxonomic status still in flux. The standard approach to understanding their diversity, endemism, and origin would require extensive field sampling on several continents and years of taxonomic work. Here we circumvent this using museum collections and freshly collected individuals in a combined approach of DNA taxonomy and phylogeny. The cox/-based GMYC analysis revealed 14 putative species on Madagascar, 70% of which potentially microendemics. A phylogenetic analysis that included African and Asian species and data from two mitochondrial and four nuclear loci indicated the Malagasy Heptageniidae are monophyletic and sister to African Compsoneuria. The observed monophyly and high microendemism highlight their conservation importance. Our results also underline the important role that museum collections can play in molecular studies, especially in critically endangered biodiversity hotspots like Madagascar.
Resumo:
PURPOSE: Evidence has accumulated in recent years suggestive of a genetic basis for a susceptibility to the development of radiation injury after cancer radiotherapy. The purpose of this study was to assess whether patients with severe radiation-induced sequelae (RIS; i.e., National Cancer Institute/CTCv3.0 grade, > or =3) display both a low capacity of radiation-induced CD8 lymphocyte apoptosis (RILA) in vitro and possess certain single nucleotide polymorphisms (SNP) located in candidate genes associated with the response of cells to radiation. EXPERIMENTAL DESIGN: DNA was isolated from blood samples obtained from patients (n = 399) included in the Swiss prospective study evaluating the predictive effect of in vitro RILA and RIS. SNPs in the ATM, SOD2, XRCC1, XRCC3, TGFB1, and RAD21 genes were screened in patients who experienced severe RIS (group A, n = 16) and control subjects who did not manifest any evidence of RIS (group B, n = 18). RESULTS: Overall, 13 and 21 patients were found to possess a total of <4 and > or =4 SNPs in the candidate genes. The median (range) RILA in group A was 9.4% (5.3-16.5) and 94% (95% confidence interval, 70-100) of the patients (15 of 16) had > or =4 SNPs. In group B, median (range) RILA was 25.7% (20.2-43.2) and 33% (95% confidence interval, 13-59) of patients (6 of 18) had > or =4 SNPs (P < 0.001). CONCLUSIONS: The results of this study suggest that patients with severe RIS possess 4 or more SNPs in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro.
Resumo:
While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.
Resumo:
The cdc10 gene of the fission yeast S. pombe is required for traverse of the start control in late G1 and commitment to the mitotic cell cycle. To increase our understanding of the events which occur at start, a pseudoreversion analysis was undertaken to identify genes whose products may interact with cdc10 or bypass the requirement for it. A single gene, sct1+ (suppressor of cdc ten), has been identified, mutation of which suppresses all conditional alleles and a null allele of cdc10. Bypass of the requirement for cdc10+ function by sct1-1 mutations leads to pleiotropic defects, including microtubule, microfilament and nuclear structural abnormalities. Our data suggest that sct1 encodes a protein that is dependent upon cdc10+ either for its normal function or expression, or is a component of a checkpoint that monitors execution of p85cdc10 function.
Resumo:
BACKGROUND: The epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. Mutations in the Scnn1b and Scnn1g genes, which encode the beta and the gamma subunits of ENaC, cause a severe form of hypertension (Liddle syndrome). The contribution of genetic variants within the Scnn1a gene, which codes for the alpha subunit, has not been investigated. METHODS: We screened for mutations in the COOH termini of the alpha and beta subunits of ENaC. Blood from 184 individuals from 31 families participating in a study on the genetics of hypertension were analyzed. Exons 13 of Scnn1a and Scnn1b, which encode the second transmembrane segment and the COOH termini of alpha- and beta-ENaC, respectively, were amplified from pooled DNA samples of members of each family by PCR. Constant denaturant capillary electrophoresis (CDCE) was used to detect mutations in PCR products of the pooled DNA samples. RESULTS: The detection limit of CDCE for ENaC variants was 1%, indicating that all members of any family or up to 100 individuals can be analyzed in one CDCE run. CDCE profiles of the COOH terminus of alpha-ENaC in pooled family members showed that the 31 families belonged to four groups and identified families with genetic variants. Using this approach, we analyzed 31 rather than 184 samples. Individual CDCE analysis of members from families with different pooled CDCE profiles revealed five genotypes containing 1853G-->T and 1987A-->G polymorphisms. The presence of the mutations was confirmed by DNA sequencing. For the COOH terminus of beta-ENaC, only one family showed a different CDCE profile. Two members of this family (n = 5) were heterozygous at 1781C-->T (T594M). CONCLUSION: CDCE rapidly detects point mutations in these candidate disease genes.
Resumo:
Background: In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods: The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results: For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e. g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion: The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
Mayflies (Ephemeroptera) are known to generally present a high degree of insular endemism: half of the 28 species known from Corsica and Sardinia are considered as endemic. We sequenced the DNA barcode (a fragment of the mitochondrial COI gene) of 349 specimens from 50 localities in Corsica, Sardinia, continental Europe and North Africa. We reconstructed gene trees of eight genera or species groups representing the main mayfly families. Alternative topologies were built to test if our reconstructions suggested a single or multiple Corsican/Sardinian colonization event(s) in each genus or species group. A molecular clock calibrated with different evolution rates was used to try to link speciation processes with geological events. Our results confirm the high degree of endemism of Corsican and Sardinian mayflies and the close relationship between these two faunas. Moreover, we have evidence that the mayfly diversity of the two islands is highly underestimated as at least six new putative species occur on the two islands. We demonstrated that the Corsican and Sardinian mayfly fauna reveals a complex history mainly related to geological events. The Messinian Salinity Crisis, which is thought to have reduced marine barriers, thus facilitating gene flow between insular and continental populations, was detected as the most important event in the speciation of most lineages. Vicariance processes related to the split and rotation of the Corso-Sardinian microplate had a minor impact as they involved only two genera with limited dispersal and ecological range. Colonization events posterior to the Messinian Salinity Crisis had only marginal effects as we had indication of recent gene flow only in two clades. With very limited recent gene flow and a high degree of endemism, mayflies from Corsica and Sardinia present all the criteria for conservation prioritization.
Resumo:
DNA is nowadays swabbed routinely to investigate serious and volume crimes, but research remains scarce when it comes to determining the criteria that may impact the success rate of DNA swabs taken on different surfaces and situations. To investigate these criteria in fully operational conditions, DNA analysis results of 4772 swabs taken by the forensic unit of a police department in Western Switzerland over a 2.5-year period (2012-2014) in volume crime cases were considered. A representative and random sample of 1236 swab analyses was extensively examined and codified, describing several criteria such as whether the swabbing was performed at the scene or in the lab, the zone of the scene where it was performed, the kind of object or surface that was swabbed, whether the target specimen was a touch surface or a biological fluid, and whether the swab targeted a single surface or combined different surfaces. The impact of each criterion and of their combination was assessed in regard to the success rate of DNA analysis, measured through the quality of the resulting profile, and whether the profile resulted in a hit in the national database or not. Results show that some situations - such as swabs taken on door and window handles for instance - have a higher success rate than average swabs. Conversely, other situations lead to a marked decrease in the success rate, which should discourage further analyses of such swabs. Results also confirm that targeting a DNA swab on a single surface is preferable to swabbing different surfaces with the intent to aggregate cells deposited by the offender. Such results assist in predicting the chance that the analysis of a swab taken in a given situation will lead to a positive result. The study could therefore inform an evidence-based approach to decision-making at the crime scene (what to swab or not) and at the triage step (what to analyse or not), contributing thus to save resource and increase the efficiency of forensic science efforts.
Resumo:
The interpretation of complex DNA profiles is facilitated by a Bayesian approach. This approach requires the development of a pair of propositions: one aligned to the prosecution case and one to the defense case. This note explores the issue of proposition setting in an adversarial environment by a series of examples. A set of guidelines generalize how to formulate propositions when there is a single person of interest and when there are multiple individuals of interest. Additional explanations cover how to handle multiple defense propositions, relatives, and the transition from subsource level to activity level propositions. The propositions depend on case information and the allegations of each of the parties. The prosecution proposition is usually known. The authors suggest that a sensible proposition is selected for the defense that is consistent with their stance, if available, and consistent with a realistic defense if their position is not known.
Resumo:
PURPOSE: Prospective-retrospective assessment of theTOP1gene copy number andTOP1mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant colon cancer trial (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan.TOP1copy number status was analyzed by fluorescencein situhybridization (FISH) using aTOP1/CEN20 dual-probe combination.TOP1mRNA data were available from previous analyses. RESULTS: TOP1FISH and follow-up data were obtained from 534 patients.TOP1gain was identified in 27% using a single-probe enumeration strategy (≥4TOP1signals per cell) and in 31% when defined by aTOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent onTOP1FISH status.TOP1mRNA data were available from 580 patients with stage III disease. Benefit of irinotecan was restricted to patients characterized byTOP1mRNA expression ≥ third quartile (RFS: HRadjusted, 0.59;P= 0.09; OS: HRadjusted, 0.44;P= 0.03). The treatment byTOP1mRNA interaction was not statistically significant, but in exploratory multivariable fractional polynomial interaction analysis, increasingTOP1mRNA values appeared to be associated with increasing benefit of irinotecan. CONCLUSIONS: In contrast to theTOP1copy number, a trend was demonstrated for a predictive property ofTOP1mRNA expression. On the basis ofTOP1mRNA, it might be possible to identify a subgroup of patients where an irinotecan doublet is a clinically relevant option in the adjuvant setting of colon cancer.Clin Cancer Res; 22(7); 1621-31. ©2015 AACR.