334 resultados para same-sex couples
Resumo:
Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.
Resumo:
OBJECTIVES: We aimed to (i) evaluate psychological distress in adolescent survivors of childhood cancer and compare them to siblings and a norm population; (ii) compare the severity of distress of distressed survivors and siblings with that of psychotherapy patients; and (iii) determine risk factors for psychological distress in survivors. METHODS: We sent a questionnaire to all childhood cancer survivors aged <16 years when diagnosed, who had survived ≥ 5 years and were aged 16-19 years at the time of study. Our control groups were same-aged siblings, a norm population, and psychotherapy patients. Psychological distress was measured with the Brief Symptom Inventory-18 (BSI-18) assessing somatization, depression, anxiety, and a global severity index (GSI). Participants with a T-score ≥ 57 were defined as distressed. We used logistic regression to determine risk factors. RESULTS: We evaluated the BSI-18 in 407 survivors and 102 siblings. Fifty-two survivors (13%) and 11 siblings (11%) had scores above the distress threshold (T ≥ 57). Distressed survivors scored significantly higher in somatization (p=0.027) and GSI (p=0.016) than distressed siblings, and also scored higher in somatization (p ≤ 0.001) and anxiety (p=0.002) than psychotherapy patients. In the multivariable regression, psychological distress was associated with female sex, self-reported late effects, and low perceived parental support. CONCLUSIONS: The majority of survivors did not report psychological distress. However, the severity of distress of distressed survivors exceeded that of distressed siblings and psychotherapy patients. Systematic psychological follow-up can help to identify survivors at risk and support them during the challenging period of adolescence.
Resumo:
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.
Resumo:
Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development.
Resumo:
Nascent sex chromosomes offer a unique opportunity to investigate the evolutionary fate of genesrecently trapped in non-recombining segments. A housekeeping gene (MED15) was recently shown to lie on the nascent sex-chromosomes of the European tree frog (Hyla arborea), with different alleles fixed on the X and the Y chromosomes. Here we document a polymorphism (glutamine deletion) in the X copy of the gene, and use population surveys and experimental crosses to test whether this polymorphism is neutral or maintained by sex-antagonistic selection. Tadpoles from parents of known genotypes revealed significant discrepancies from Mendelian inheritance, suggesting possible sex-antagonistic effects under laboratory conditions. Quantitatively, however, these effects did not meet the conditions for polymorphism maintenance. Furthermore, field estimates of female genotypic frequencies did not differ from Hardy-Weinberg equilibrium and allelic frequencies on the X chromosome did not differ between sexes. In conclusion, although sex antagonistic effects cannot be excluded given the laboratory conditions, the X-linked polymorphism under study appears neutral in the wild. Alternatively, sex-antagonistic selection might still account for the fixation of a male specific allele on the Y chromosome.
Resumo:
For many applications in population genetics, codominant simple sequence repeats (SSRs) may have substantial advantages over dominant anonymous markers such as amplified fragment length polymorphisms (AFLPs). In high polyploids, however, allele dosage of SSRs cannot easily be determined and alleles are not easily attributable to potentially diploidized loci. Here, we argue that SSRs may nonetheless be better than AFLPs for polyploid taxa if they are analyzed as effectively dominant markers because they are more reliable and more precise. We describe the transfer of SSRs developed for diploid Mercurialis huetii to the clonal dioecious M. perennis. Primers were tested on a set of 54 male and female plants from natural decaploid populations. Eight of 65 tested loci produced polymorphic fragments. Binary profiles from 4 different scoring routines were used to define multilocus lineages (MLLs). Allowing for fragment differences within 1 MLL, all analyses revealed the same 14 MLLs without conflicting with merigenet, sex, or plot assignment. For semiautomatic scoring, a combination of as few as 2 of the 4 most polymorphic loci resulted in unambiguous discrimination of clones. Our study demonstrates that microsatellite fingerprinting of polyploid plants is a cost efficient and reliable alternative to AFLPs, not least because fewer loci are required than for diploids.
Resumo:
Arbuscular mycorrhizal fungi are important symbionts that enhance plant growth. They were thought to have been asexual for hundreds of millions of years. A new study reveals that the fungi actually possess highly conserved genetic machinery for completion of meiosis.
Resumo:
Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.
Resumo:
The overwhelming predominance of sexual reproduction in nature is surprising given that sex is expected to confer profound costs in terms of production of males and the breakup of beneficial allele combinations. Recognition of these theoretical costs was the inspiration for a large body of empirical research-typically focused on comparing sexual and asexual organisms, lineages, or genomes-dedicated to identifying the advantages and maintenance of sex in natural populations. Despite these efforts, why sex is so common remains unclear. Here, we argue that we can generate general insights into the advantages of sex by taking advantage of parthenogenetic taxa that differ in such characteristics as meiotic versus mitotic offspring production, ploidy level, and single versus multiple and hybrid versus non-hybrid origin. We begin by evaluating benefits that sex can confer via its effects on genetic linkage, diversity, and heterozygosity and outline how the three classes of benefits make different predictions for which type of parthenogenetic lineage would be favored over others. Next, we describe the type of parthenogenetic model system (if any) suitable for testing whether the hypothesized benefit might contribute to the maintenance of sex in natural populations, and suggest groups of organisms that fit the specifications. We conclude by discussing how empirical estimates of characteristics such as time since derivation and number of independent origins of asexual lineages from sexual ancestors, ploidy levels, and patterns of molecular evolution from representatives of these groups can be used to better understand which mechanisms maintain sex in natural populations.
Resumo:
To improve long-term survival, prompt revascularization of the infarct-related artery should be done in patients with acute myocardial infarction (AMI); therefore, a large proportion of these patients would be hospitalized during out of hours. The clinical effects of out-of-hours AMI management were already questioned, with conflicting results. The purpose of this investigation was to compare the in-hospital outcome of patients admitted for AMI during out of hours and working hours. All patients with AMI included in the AMIS Plus Registry from January 1, 1997, to March 30, 2006, were analyzed. The working-hours group included patients admitted from 7 a.m. to 7 p.m. on weekdays, and the out-of-hours group included patients admitted from 7 p.m. to 7 a.m. on weekdays or weekends. Major cardiac events were defined as cardiovascular death, reinfarction, and stroke. The study primary end points were in-hospital death and major adverse cardiac event (MACE) rates. A total of 12,480 patients met the inclusion criteria, with 52% admitted during normal working hours, and 48%, during out of hours. Patients admitted during weekdays included more women (28.1% vs 26%; p = 0.009), older patients (65.5 +/- 13 vs 64.1 +/- 13 years; p = 0.0011), less current smokers (40.1% vs 43.5%; p <0.001), and less patients with a history of ischemic heart disease (31.5% vs 34.5%; p = 0.001). A significantly higher proportion of patients admitted during out of hours had Killip's class III and IV. No differences in terms of in-hospital survival rates between the 2 groups (91.5% vs 91.2%; p = 0.633) or MACE-free survival rates (both 88.5%; p = 1.000) were noted. In conclusion, the outcome of patients with AMI admitted out of hours was the same compared with those with a weekday admission. Of predictors for in-hospital outcome, timing of admission had no significant influence on mortality and/or MACE incidence.