286 resultados para plant genotype
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. Comparison between the control accession Sav-0 and an introgression of brx into this background (brxS) indicated that, surprisingly, brx loss of function did not negatively affect fitness in pure stands. However, in mixed, well-watered stands brxS performance and reproductive output decreased significantly, as the proportion of Sav-0 neighbors increased. Additional comparisons between brxS and a brxS line that was complemented by a BRX transgene confirmed a direct effect of the loss-of-function allele on plant performance, as indicated by restored competitive ability of the transgenic genotype. Further, because plant height was very similar across genotypes and because the experimental setup largely excluded shading effects, the impaired competitiveness of the brx loss-of-function genotype likely reflects below-ground competition. In summary, these data reveal conditional fitness effects of a single gene polymorphism in response to intraspecific competition in Arabidopsis.
Resumo:
SUMMARY: Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.
Resumo:
BACKGROUND & AIMS: In treatment-naive patients mono-infected with genotype 1 chronic HCV, treatments with telaprevir/boceprevir (TVR/BOC)-based triple therapy are standard-of-care. However, more efficacious direct-acting antivirals (IFN-based new DAAs) are available and interferon-free (IFN-free) regimens are imminent (2015). METHODS: A mathematical model estimated quality-adjusted life years, cost and incremental cost-effectiveness ratios of (i) IFN-based new DAAs vs. TVR/BOC-based triple therapy; and (ii) IFN-based new DAAs initiation strategies, given that IFN-free regimens are imminent. The sustained virological response in F3-4/F0-2 was 71/89% with IFN-based new DAAs, 85/95% with IFN-free regimens, vs. 64/80% with TVR/BOC-based triple therapy. Serious adverse events leading to discontinuation were taken as: 0-0.6% with IFN-based new DAAs, 0% with IFN-free regimens, vs. 1-10% with TVR/BOC-based triple therapy. Costs were euro60,000 for 12weeks of IFN-based new DAAs and two times higher for IFN-free regimens. RESULTS: Treatment with IFN-based new DAAs when fibrosis stage ⩾F2 is cost-effective compared to TVR/BOC-based triple therapy (euro37,900/QALY gained), but not at F0-1 (euro103,500/QALY gained). Awaiting the IFN-free regimens is more effective, except in F4 patients, but not cost-effective compared to IFN-based new DAAs. If we decrease the cost of IFN-free regimens close to that of IFN-based new DAAs, then awaiting the IFN-free regimen becomes cost-effective. CONCLUSIONS: Treatment with IFN-based new DAAs at stage ⩾F2 is both effective and cost-effective compared to TVR/BOC triple therapy. Awaiting IFN-free regimens and then treating regardless of fibrosis is more efficacious, except in F4 patients; however, the cost-effectiveness of this strategy is highly dependent on its cost.
Resumo:
Caste differentiation and reproductive division of labor are the hallmarks of insect societies. In ants and other social Hymenoptera, development of female larvae into queens or workers generally results from environmentally induced differences in gene expression. However, several cases in which certain gene combinations may determine reproductive status have been described in bees and ants. We investigated experimentally whether genotype directly influences caste determination in two populations of Pogonomyrmex harvester ants in which genotype-caste associations have been observed. Each population contains two genetic lineages. Queens are polyandrous and mate with males of both lineages , but in mature colonies, over 95% of daughter queens have a pure-lineage genome, whereas all workers are of F1 interlineage ancestry. We found that this pattern is maintained throughout the colony life cycle, even when only a single caste is being produced. Through controlled crosses, we demonstrate that pure-lineage eggs fail to develop into workers even when interlineage brood are not present. Thus, environmental caste determination in these individuals appears to have been lost in favor of a hardwired genetic mechanism. Our results reveal that genetic control of reproductive fate can persist without loss of the eusocial caste structure.
Resumo:
A genetic polymorphism of cytochrome P450 2D6 has been described with the existence of poor (zero functional genes), extensive (one or two functional genes), and ultrarapid metabolizers (three or more functional genes). The authors measured the steady-state trough (R)- (i.e., the active enantiomer), (S)-, and (R,S)-methadone plasma levels in opiate-dependent patients receiving methadone maintenance treatment (MMT) and genotyped them for cytochrome P4502D6. The patients' medical records were reviewed to assess the outcome of the MMT with regard to the absence of illicit opiate consumption and to the absence of withdrawal complaints in ultrarapid and poor metabolizers. Of 256 patients included, 18 were found to be poor metabolizers, 228 to be extensive metabolizers, and 10 to be ultrarapid metabolizers. Significant differences were found between genotypes for (R)- (p = 0.024), (S)- (p = 0.033), and (R,S)-methadone (p = 0.026) concentrations to dose-to-weight ratios. For (R)-methadone, a significant difference was found between ultrarapid metabolizers and poor metabolizers (p = 0.009), with the median value in the former group being only 54% of the median value in the latter group. These results confirm the involvement of cytochrome P450 2D6 in methadone metabolism. Although the difference was nonsignificant (p = 0.103), 13 (72%) of the 18 poor metabolizers and only 4 (40%) of the 10 ultrarapid metabolizers were considered successful in their treatment. More studies are needed to examine the influence of the ultrarapid metabolizer status on the outcome of the MMT.
Resumo:
Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci etal. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (JOrgensen etal. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.
Resumo:
A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.
Resumo:
Background and Aims: The NS5A protein of the HCV is known tobe involved in viral replication and assembly and probably in theresistance to Interferon based-therapy. Previous studies identifiedinsertions or deletions from 1 to 12 nucleotides in several genomicregions. In a multicenter study (17 French and 1 Swiss laboratoriesof virology), we identified for the first time a 31 amino acidsinsertion leading to a duplication of the V3 domain in the NS5Aregion with a high prevalence. Quasispecies of each strain withduplication were characterized and the inserted V3 domain wasidentified.Methods: Between 2006 and 2008, 1067 patients chronicallyinfected with a 1b HCV were consecutively included in the study.We first amplified the V3 region by RT-PCR to detect duplication(919 samples successfully amplified). The entire NS5A region wasthen amplified, cloned and sequenced in strains bearing theduplication. V3 sequences (called R1 and R2) from each clonewere analyzed with BioEdit and compared to a V3 consensussequence (C) built from the Database Los Alamos Hepatitis C.Entropy was determined at each position.Results: V3 duplications were identified in 25 patients representinga prevalence of 2.72%. We sequenced 2043 clones from which776 had a complete coding NS5A sequence (corresponding toa mean of 30 clones per patient). At the intra-individual level,6 to 17 variants were identified per V3 region, with a maximum of3 different amino acids. At the inter-individual level, a differenceof 7 and 2 amino acids was observed between C and R1 and R2sequences, respectively. Moreover few positions presented entropyhigher than 1 (4 for the R1, 2 for the R2 and 2 for the C). Among allthe sequenced clones, more than 60% were defective virus (partialfragment of NS5A or stop codon).Conclusions: We identified a duplication of the V3 domain ingenotype 1b HCV with a high prevalence. The R2 domain, which wasthe most similar to the C region, might probably be the "original"domain, whereas R1 should be the inserted domain. Phylogeneticanalyses are under process to confirm this hypothesis.
Resumo:
BACKGROUND & AIMS: Genetic variation in the interleukin 28B (IL28B) gene has been associated with the response to interferon-alfa/ribavirin therapy in hepatitis C virus (HCV) genotype 1-infected patients. The importance of three IL28B single nucleotide polymorphisms (rs8099917, rs12980275 and rs12979860) for HCV genotype 2/3-infected patients is unknown. METHODS: In patients with chronic hepatitis C genotype 2/3 (n=267), IL28B host genotypes (rs8099917, rs12980275 and rs12979860) were analyzed for associations with sustained virologic response (SVR) to antiviral therapy with (pegylated) interferon-alfa and ribavirin and with respect to epidemiological, biochemical, and virological parameters. For comparison, hepatitis C genotype 1 patients (n=378) and healthy controls (n=200) were included. RESULTS: The rs12979860 CC genotype, lower age, and genotype 2 were significantly associated with SVR in HCV genotype 2/3-infected patients (p=0.01, p=0.03 and p=0.03, respectively). No association was observed for rs8099917 and rs12980275. In addition, an SVR in patients with rapid virologic response (RVR) was associated with the rs12979860 CC genotype (p=0.05), while for non-RVR no association was found. Furthermore, a significant association with a higher baseline viral load was observed for all three IL28B genotypes in genotype 1/2/3-infected patients. Finally, increasing frequencies of the rs12979860 CC genotypes were observed in genotype 1- (33.9%), genotype 3- (38.9%), and genotype 2-infected (51.9%) patients in comparison with healthy controls (49.0%) (p<0.01). CONCLUSIONS: In genotype 2/3-infected patients, rs12979860 was significantly associated with SVR. The frequency of the rs12979860 CC genotype is lower in HCV genotype 1 vs. genotype 2/3 patients. All major IL28B genotypes are associated with HCV-RNA concentration.
Where do industrial workers go after plant closure? Survey evidence two years after job displacement