147 resultados para molecular logic
Resumo:
Abstract Arbuscular mycorrhizal fungi (AMF) form symbiosis with roots of approximately 80% of known land plants. These fungi play a key role in the ecology and adaptation of plants to various ecosystems.by increasing the plant resources for various nutrients. Despite their important ecological role, we still have poor understanding of their genetic structure and their molecular evolution. The work presented in this thesis aims to isolate and analyse AMF genes with various molecular techniques, in order to obtain new insights about their genetics, phylogeny and molecular evolution. Some AMF genes were shown through phylogenetic analyses to be more related with plants or mycoparasites than with other fungal organisms. These results led to the prediction that lateral gene transfers (LGT) occurred between AMF and plants during their long-term co-évolution. By phylogenetic and molecular analyses, in the chapter 2 I demonstrate that the hypothesis of LGT is most likely a consequence of analyses carried out on contaminant non AMF-DNA. In addition, various features characteristic of AMF genes have been determined, allowing researchers to scan their own sequence databases for potential non-AMF contaminants. Phylogenetic relationships of AMF with other fungi has been mostly analysed using molecular markers of ribosomal origin. In chapter 2 I successfully isolated gene encoding α- and ß-tubulins from several AMF genera. Consequently, phylogenetic analyses showed that AMF possess an unexpected relationship with ancestral aquatic fungi (chytrids). These results are consistent with the prediction stating that AMF may have played an important role in the colonisation of land by green plants through the establishment of a symbiosis and after the divergence of AMF from aquatic ancestors. In Chapter 4 I tried to isolate the entire AMF gene family encoding P-Type II ATPases, in order to determine their molecular evolution with the fungal kingdom. These genes were further analysed to detect the level of sequence polymorphism that is present within an AMF population. The results obtained show that mutational events previously thought as occurring only among divergent evolutionary lineages (gene duplications, indel mutations in coding regions) can occur within a single population of AMF. These results have far reaching consequences for our understanding of the genetics and ecology of AMF. Résumé Les champignons endomycorrhiziens arbusculaires (CEA) forment une symbiose racinaire avec environ 80% des plantes vasculaires connues. Ces champignons possèdent un rôle important dans l'écologie et l'adaptation des plantes au sein de différents écosystèmes en .augmentant leurs ressources en nutriments. Le travail présenté dans cette thèse se propose d'isoler et d'analyser certains gènes de CEA avec différentes techniques moléculaires à fin d'obtenir de pÌus amples informations concernant l'évolution moléculaire, la phylogénie et leur diversité génétique à diverses échelles taxonomiques. Certaines analyses phylogénétiques des CEA ont conduit à l'hypothèse que des transferts horizontaux de gènes (THG) ont pu avoir lieu durant leur longue co-évolution avec les plantes vasculaires. Dans le chapitre 2 de cette thèse nous démontrons par analyses moléculaire et phylogénétique que l'hypothèse de THG est une conséquence de contaminations à partir d'ADN de plante ou d'autres micro-organismes. De plus, de nombreuses caractéristiques moléculaires de CEA ont pu être déterminées, permettant la mise en place d'un plan à suivre lors de l'analyse de gènes de CEA dans les études futures. Les relations évolutives des. CEA avec d'autres champignons ont été analysées majoritairement à l'aide de marqueurs moléculaires d'origine ribosomiale. Dans les chapitres 2 et 3 j'ai isolé des gènes codant pour l'a- et la ß-tubuline chez différents genres, de CEA. Les analyses phylogénétiques ont démontré une parenté entre les CEA et des champignons aquatiques ancestraux (chytrides). Ces résultats sont en accord avec l'hypothèse selon laquelle les CEA ont probablement joué un rôle primordial dans l'établissement des plantes sur terre à travers une symbiose et suite à leur évolution à partir d'ancêtres vivant dans des milieux aquatiques: Dans le chapitre 4 j'ai isolé une entière famille de gènes chez les CEA codant des ATPases de la membrane plasmique, et étudié leur évolution moléculaire dans le règne des champignons. Ces mêmes gènes ont été analysés ultérieurement à fin de déterminer le degré de polymorphisme de séquence qui peut être présent au sein d'une population de CEA. Les résultats obtenus montrent que des évènements mutationnels considérés comme apparaissant exclusivement dans des lignées évolutives très divergentes (duplication de gènes, insertions/délétions dans des régions transcrites du génome) ont lieu sein d'une même population de CEA. Cette découverte a un impact important sur nos connaissances concernant la génétique des populations des CEA et leur écologie.
Resumo:
PURPOSE: Most RB1 mutations are unique and distributed throughout the RB1 gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblastoma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. METHODS: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RB1 loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. RESULTS: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. CONCLUSIONS: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RB1 screening for mutations leaves a negative result or is unavailable.
Resumo:
We sequenced 2167 base pairs (bp) of mitochondrial DNA cytochrome b and 16S, and 1390 bp of nuclear genes BRCA1 and ApoB in shrews taxa (Eulipotyphla, family Soricidae). The aim was to study the relationships at higher taxonomic levels within this family, and in particular the position of difficult clades such as Anourosorex and Myosorex. The data confirmed two monophyletic subfamilies, Soricinae and Crocidurinae. In the former, the tribes Anourosoricini, Blarinini, Nectogalini, Notiosoricini, and Soricini were supported. The latter was formed by the tribes Myosoricini and Crocidurini. The genus Suncus appeared to be paraphyletic and included Sylvisorex. We further suggest a biogeographical hypothesis, which shows that North America was colonized by three independent lineages of Soricinae during middle Miocene. Our hypothesis is congruent with the first fossil records for these taxa. Using molecular dating, the first exchanges between Africa and Eurasia occurred during the middle Miocene. The last one took place in the Late Miocene, with the dispersion of the genus Crocidura through the old world.
Resumo:
BACKGROUND: Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context. METHODOLOGY/PRINCIPAL FINDINGS: We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases. CONCLUSIONS/SIGNIFICANCE: Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.
Resumo:
Résumé : Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de pouvoir se défendre contre les pathogènes tel que les bactéries, les virus, et les parasites. La réponse immunitaire doit être finement régulée par différentes voies de signalisation moléculaire, afin d'assurer une efficacité optimale, et d'éviter des dommages tissulaires indésirables. Les résultats expérimentaux décrits dans ce manuscrit, mettent en évidence que la protéine Unc5CL, qui contient un death domain (DD), est impliquée dans la régulation de la réponse immunitaire des muqueuses. Il a été démontré que cette protéine contient aussi un domaine transmembranaire de type III dans sa partie N-terminale, permettant ainsi de l'ancrer et d'exposer sa partie C-terminale dans le cytosol, un prérequis pour la signalisation dans ce compartiment cellulaire. De plus, cette protéine a la capacité d'activer le facteur de transcription NFxB, qui joue un rôle important dans le système immunitaire, ainsi que dans d'autres processus cellulaires essentiels. Le profil transcriptionnel révèle que l'activation de NF-κB induite par Unc5CL conduit principalement à une réponse inflammatoire, qui se caractérise par la production de diverses chimiokines (e.g. CXCL-1, IL-8 et CCL20). Il a également été démontré que Unc5CL requiert les mêmes molécules qui sont utilisées dans la voie de signalisation des récepteurs de la famille toll et de l'interleukine-1. De manière similaire à leur protéine adaptatrice MyD88, Unc5CL a la capacité de recruter, via une interaction homotypique DD-DD, les kinases IRAK1 et IRAK4 qui contiennent elles aussi un DD, permettant ainsi au signal d'être transmis. La production d'un anticorps polyclonal contre le DD de Unc5CL a permis d'identifier des lignées cellulaires et des tissus exprimant cette protéine, ainsi que de déterminer sa localisation sub-cellulaire. Unc5CL a été détecté dans les cellules de la muqueuse utérine et intestinale, ainsi que dans une lignée cellulaire issue d'un adénocarcinome colorectal humain, les CaCo-2. Dans chacun de ces cas, Unc5CL a été principalement détectée au niveau apical des cellules épithéliales polarisées. De manière similaire à PIDD, une protéine impliquée dans la réponse aux dommages à l'ADN, et au constituant des pores nucléaires Nup98, Unc5CL est constitutivement clivé de manière autoprotéolytique, au niveau d'un site HFS. Il est intéressant d'observer que les deux fragments ainsi générés restent fortement associés l'un à l'autre après clivage. Finalement, un criblage protéomique pour identifier un partenaire d'interaction, a mis en évidence l'ubiquitin ligase E3 ITCH, qui régule de manière négative Unc5CL en augmentant sa dégradation. Summary : Multicellular organisms have evolved the immune system in order to defend themselves against pathogens such as bacteria, viruses and eukaryotic parasites. Immune responses have to be tightly orchestrated by signaling mechanisms to achieve optimal effectiveness and minimal tissue damage. The experimental results in this thesis manuscript provide evidence that the death domain (DD)-containing protein Unc5CL might be involved in the regulation of mucosal immune responses. It could be shown that the protein contains an N-terminal type-III transmembrane domain that anchors the protein with its C-terminus exposed to the cytosol, a prerequisite for signaling events in this compartment. Furthermore, the protein has the capacity to activate the transcription factor NF-κB, which plays an important role in the immune system as well as in other essential cellular processes. Transcriptional profiling revealed that Unc5CL-mediated activation of NF-κB mainly leads to an inflammatory response, characterized by the production of chemokines (e.g. CXCL-l, IL-8 and CCL20). Furthermore, it could be shown that Unc5CL requires the same downstream signaling molecules as the evolutionarily ancient tolUinterleukin-1 receptor family. Similar to their adapter protein MyD88, Unc5CL has the capacity to recruit the DD-containing kinases IRAKI and IRAK4 for signaling and can interact with these proteins via homotypic DD-DD interactions. Generation of polyclonal antibodies raised against the DD of Unc5CL allowed the identification of cell lines and tissues that express the endogenous protein as well as to confine its subcellular localization. Unc5CL was detected in primary mucosal uterine and intestinal epithelial cells as well as in the human colorectal adenocarcinoma cell line CaCo-2. In all cases, the protein was mainly localized to the apical face of these polarized epithelial cells. Similar to PIDD, a protein critically involved in responses to DNA damage, and the nuclear pore component Nup98, Unc5CL is constitutively autoproteolytically processed at an HFS site. Interestingly, the two generated cleavage fragments remain tightly associated after processing. Finally, a proteomics screen for interaction partners identified the E3 ubiquitin ligase ITCH as a negative regulator of Unc5CL by targeting the protein for degradation.
Resumo:
Two new forms of non-specific crossreacting antigens (NCAs) were identified in the Nonidet P40 (NP-40) extracts of normal granulocytes by precipitation with the monoclonal antibody (MAb) 192 directed against carcinoembryonic antigen (CEA) and already known to crossreact with the perchloric acid soluble NCA-55. The NP-40 soluble NCAs recognized by MAb 192 have apparent mol. wts of 90,000 and 160,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both NCAs appear to consist of a single monomeric polypeptide chain, since they have the same electrophoretic mobility in SDS-PAGE under reduced and non-reduced conditions. When granulocytes were extracted with perchloric acid instead of NP-40, only the 55,000 mol. wt antigen, corresponding to the previously described NCA-55, was precipitated by MAb 192. Furthermore, it was shown that NCA-55 is not a degradation product of NCA-90 or NCA-160 due to the perchloric acid treatment because exposure to perchloric acid of NCA preparations purified from NP-40 extracts did not change their apparent mol. wts in SDS-PAGE. It was also shown that NCA-160 is not a granulocytic form of CEA because it was not precipitated by the MAb 35 reacting exclusively with CEA. Immunocytochemical studies of granulocytes and macrophages showed that MAb 192 stained both types of cells whereas MAb 47 stained only the granulocytes and MAb 35 none of these cells. In granulocytes both MAbs reacted with antigens associated with granules and also present at the periphery of the nucleus as well as in the Golgi apparatus. The NCA-90 identified by MAb 192 was found by sequential immunodepletion to be antigenically distinct from the NCA-95 precipitated by MAb 47. The epitope recognized by MAb 192 on CEA and NCA molecules appears to be on the peptidic moiety because the antigens deglycosylated by the enzyme Endo F were still precipitated by this MAb. Taken together, the results indicate that MAb 192 identifies two novel forms of NCA (NCA-90 and NCA-160) in NP-40 extracts of granulocytes, which are distinct from CEA and the previously described NCA-55 and NCA-95 identified by MAbs 192 and 47, respectively, in perchloric acid extracts of granulocytes.
Resumo:
Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder marked by the loss of dopaminergic neurons (in particular in the substantia nigra) causing severe impairment of movement coordination and locomotion, associated with the accumulation of aggregated α-synuclein (α-Syn) into proteinaceous inclusions named Lewy bodies. Various early forms of misfolded α-Syn oligomers are cytotoxic. Their formation is favored by mutations and external factors, such as heavy metals, pesticides, trauma-related oxidative stress and heat shock. Here, we discuss the role of several complementing cellular defense mechanisms that may counteract PD pathogenesis, especially in youth, and whose effectiveness decreases with age. Particular emphasis is given to the 'holdase' and 'unfoldase' molecular chaperones that provide cells with potent means to neutralize and scavenge toxic protein conformers. Because chaperones can specifically recognize misfolded proteins, they are key specificity factors for other cellular defenses, such as proteolysis by the proteasome and autophagy. The efficiency of the cellular defenses decreases in stressed or aging neurons, leading to neuroinflammation, apoptosis and tissue loss. Thus, drugs that can upregulate the molecular chaperones, the ubiquitin-proteasome system and autophagy in brain tissues are promising avenues for therapies against PD and other mutation-, stress- or age-dependent protein-misfolding diseases.
Resumo:
Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.
Resumo:
The brain-spliced isoform of Myosin Va (BR-MyoVa) plays an important role in the transport of dense core secretory granules (SGs) to the plasma membrane in hormone and neuropeptide-producing cells. The molecular composition of the protein complex that recruits BR-MyoVa to SGs and regulates its function has not been identified to date. We have identified interaction between SG-associated proteins granuphilin-a/b (Gran-a/b), BR-MyoVa and Rab27a, a member of the Rab family of GTPases. Gran-a/b-BR-MyoVa interaction is direct, involves regions downstream of the Rab27-binding domain, and the C-terminal part of Gran-a determines exon specificity. MyoVa and Gran-a/b are partially colocalised on SGs and disruption of Gran-a/b-BR-MyoVa binding results in a perinuclear accumulation of SGs which augments nutrient-stimulated hormone secretion in pancreatic beta-cells. These results indicate the existence of at least another binding partner of BR-MyoVa that was identified as rabphilin-3A (Rph-3A). BR-MyoVa-Rph-3A interaction is also direct and enhanced when secretion is activated. The BR-MyoVa-Rph-3A and BR-MyoVa-Gran-a/b complexes are linked to a different subset of SGs, and simultaneous inhibition of these complexes nearly completely blocks stimulated hormone release. This study demonstrates that multiple binding partners of BR-MyoVa regulate SG transport, and this molecular mechanism is universally used by neuronal, endocrine and neuroendocrine cells.
Resumo:
Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.
Resumo:
Abstract : Apoptosis is an evolutionarily conserved cellular suicide mechanism that can be triggered by activation of various pathways, such as the Fas-Pathway. Upon stimulation by its specific ligand (FasL), present at the surface of Cytotoxic Τ lymphocytes, the death receptor Fas initiates a signaling cascade culminating in the activation of cellular caspases, leading thus to cell death of the target cell (e.g. transformed cell). Dysregulation of apoptosis in general, and of Fas pathway in particular, was shown to contribute to pathogenesis of cancers and many human diseases. Even though, during the last decades the molecular mechanisms of apoptosis have been widely studied, it is important to better understand the mechanisms leading to apoptosis, to improve our understanding of pathological processes, and generate more subtle apoptosis-modulating therapies to fight cancer and other diseases. In order to identify new components of the Fas signaling pathway, a screen based on the mechanism of RNA interference was undertaken. After a first and a second manual whole-kinome screen, we identified several strong positive hits that showed a protection against Fas ligand-induced apoptosis with distinct siRNAs, notably STK11, an interesting tumor suppressor mutated in several sporadic and inherited cancers. The STK11 functional characterization reveals that this kinase represents an apically acting general pro-apoptotic modulator of the extrinsic pathway (FasL, TRAIL, TNF-induced apoptosis), but not of the intrinsic apoptotic pathway. The STK11 action on the Fas pathway was shown to be dependent on its kinase activity, but independent of AMPK, a well-characterized STK11 downstream substrate. Furthermore, STK11 was shown to interact with caspase-8, a major mediator of the extrinsic pathway, and modulate its activity through an unclear mechanism that may involve an STK11-dependant caspase-8 phosphorylation. This modification may allow a proper caspase-8 polyubiquitination and activation in p62 sequestosmes aggregates, but may also increase the activation of caspase-8 at the DISC level. In addition, we observed that STK11 modulate not only the apoptotic pathway induced by Fas engagement, but also FasL-induced JNK and NF- KB, sustaining an upstream role of this kinase in the pathway. In conclusion, our report reveals that STK11 is an important pro-apoptotic modulator of the Fas pathway in particular, and extrinsic pathway in general. Our finding could explain, at least partially, why inactivating mutations of the kinase leads to cancer, by allowing resistance to apoptosis and accordingly evasion of immune surveillance. Résumé : L'apoptose est un mécanisme de suicide cellulaire, conservé dans diverses espèces, et qui au niveau moléculaire est déclenché par différentes voies de signalisation, comme par exemple lors de l'activation du récepteur Fas. La liaison du ligand FasL au récepteur de la mort Fas, induit une cascade de signalisation qui conduit à l'activation des caspases. Les lymphocytes Τ cytotoxiques peuvent utiliser la voie Fas pour induire la mort et se débarrasser de cellules dangereuses pour le reste de l'organisme, tel que les cellules transformées. La dysrégulation de l'apoptose en général, et de la voie Fas en particulier, peut contribuer à diverses maladies telles que le cancer. Même si ces dernières décennies, les mécanismes moléculaires conduisant à l'apoptose ont été extensivement étudiés, il reste néanmoins important de mieux comprendre le phénomène d'apoptose, pour améliorer notre compréhension des processus pathologiques, mais surtout dans le but de développer de nouvelles thérapies ciblant l'apoptose contre le cancer et d'autres pathologies. Pour identifier de nouveau constituants de la voie Fas, un criblage génétique basé sur l'interférence à l'ARN a été entrepris. Après un premier et un deuxième criblage d'une librairie du kinome, nous avons identifié différentes protéines qui pourraient jouer un rôle positif dans la voie Fas, et en particulier la protéine suppresseur de tumeur STK11, qui est fréquemment mutée dans divers cancers sporadiques et héréditaires. La caractérisation fonctionnelle de STK11 a révélé que cette kinase était un modulateur apical de la voie extrinsèque de l'apoptose en général (Fas, TNF, TRAIL), mais pas de la voie intrinsèque. L'action de STK11 sur la voie Fas est dépendante de sa fonction kinase, mais indépendante de l'AMPK, un substrat bien caractérisé de STK11. De plus, STK11 interagît avec la caspase-8, un constituant majeur de la voie Fas, et module son activité, par un mécanisme encore peu clair qui pourrait impliquer une phosphorylation de la caspase-8 par STK11. Cette modification pourrait permettre une activation optimale de la caspase-8 en jouant un rôle dans le processus de polyubiquitination de la caspase-8, phénomène qui semble être important pour l'activation de la caspase-8 dans des agrégats protéiques avec p62, mais qui pourrait aussi augmenter son activation au niveau du DISC. Finalement, nous avons observé que STK11 modulait non seulement la voie apoptotique déclenchée par l'activation de Fas, mais aussi les voies non-apoptotiques de Fas, comme JNK et NF-KB. En conclusion notre étude, révèle que STK11 est un important modulateur pro- apoptotique de la voie Fas, et de la voie extrinsèque en général. Cette découverte pourrait expliquer, du moins partiellement, pourquoi les mutations inactivatrices de STK11 conduisent au cancer, par une augmentation de la résistance à l'apoptose et donc par l'évasion de la surveillance immunitaire.
Resumo:
We karyotyped and sequenced 1,140 base pairs of the mitochondrial DNA cytochrome b of a specimen of Zarudny's rock shrew (Crocidura zarudnyi) from Baluchestan, southeastern Iran, to clarify its cytogenetic and molecular relationships with other Eurasian species of Crocidura. According to the karyotype (2N = 40, FN = 50), Zarudny's rock shrew belongs to the group of the lesser white-toothed shrew (C. suaveolens), which is different from other known crocidurine karyotypes, considering the combination of the diploid and fundamental number of chromosomes. Molecular results revealed that C. zarudnyi is included in a monophyletic clade with the C. suaveolens group, where it is a sister taxon to the others (mean Kimura 2-parameter distance = 9.7%).
Resumo:
Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.