189 resultados para mRNA expression profile
Resumo:
Ambient light conditions trigger both developmental transitions, such as the induction of flowering, and a suite of adaptive responses, exemplified by the shade-avoidance syndrome. These responses are initiated by three families of photoreceptors that are conserved in all higher plants: the phototropins, cryptochromes and phytochromes (phyA--phyE, cry1--cry3, phot1 and phot2 in Arabidopsis). Molecular genetic studies performed mainly in Arabidopsis indicate that photon capture by these light sensors usually initiates rapid changes in the gene expression profile, leading to plant adaptation to their environment. Interestingly, numerous transcription factors are early targets of light regulation, both at the transcriptional and post-transcriptional levels.
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
BACKGROUND:: Mechanical stretch has been shown to induce vascular remodeling and increase vessel density, but the pathophysiologic mechanisms and the morphologic changes induced by tensile forces to dermal vessels are poorly understood. METHODS:: A custom computer-controlled stretch device was designed and applied to the backs of C57BL/6 mice (n = 38). Dermal and vascular remodeling was studied over a 7-day period. Corrosion casting and three-dimensional scanning electron microscopy and CD31 staining were performed to analyze microvessel morphology. Hypoxia was assessed by immunohistochemistry. Western blot analysis of vascular endothelial growth factor (VEGF) and mRNA expression of VEGF receptors was performed. RESULTS:: Skin stretching was associated with increased angiogenesis as demonstrated by CD31 staining and vessel corrosion casting where intervascular distance and vessel diameter were decreased (p < 0.01). Immediately after stretching, VEGF dimers were increased. Messenger RNA expression of VEGF receptor 1, VEGF receptor 2, neuropilin 1, and neuropilin 2 was increased starting as early as 2 hours after stretching. Highly proliferating epidermal cells induced epidermal hypoxia starting at day 3 (p < 0.01). CONCLUSIONS:: Identification of significant hypoxic cells occurred after identification of neovessels, suggesting an alternative mechanism. Increased expression of angiogenic receptors and stabilization of VEGF dimers may be involved in a mechanotransductive, prehypoxic induction of neovascularization.
Resumo:
Cancer/testis (CT) genes are normally expressed in germ cells only, yet are reactivated and expressed in some tumors. Of the approximately 40 CT genes or gene families identified to date, 20 are on the X chromosome and are present as multigene families, many with highly conserved members. This indicates that novel CT gene families may be identified by detecting duplicated expressed genes on chromosome X. By searching for transcript clusters that map to multiple locations on the chromosome, followed by in silico analysis of their gene expression profiles, we identified five novel gene families with testis-specific expression and >98% sequence identity among family members. The expression of these genes in normal tissues and various tumor cell lines and specimens was evaluated by qualitative and quantitative RT-PCR, and a novel CT gene family with at least 13 copies was identified on Xq24, designated as CT47. mRNA expression of CT47 was found mainly in the testes, with weak expression in the placenta. Brain tissue was the only positive somatic tissue tested, with an estimated CT47 transcript level 0.09% of that found in testis. Among the tumor specimens tested, CT47 expression was found in approximately 15% of lung cancer and esophageal cancer specimens, but not in colorectal cancer or breast cancer. The putative CT47 protein consists of 288 amino acid residues, with a C-terminus rich in alanine and glutamic acid. The only species other than human in which a gene homologous to CT47 has been detected is the chimpanzee, with the predicted protein showing approximately 80% identity in its carboxy terminal region.
Resumo:
Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.
Resumo:
We provide here a detailed protocol for studying the changes in electrical surface potential of leaves. This method has been developed over the years by plant physiologists and is currently used in different variants in many laboratories. The protocol records surface potential changes to measure long-distance electrical signals induced by diverse stimuli such as leaf wounding or current injection. This technique can be used to determine signaling speeds, to measure the connectivity between different plant organs and-by exploiting mutant plants-to identify transporters and ion channels involved in electrical signaling. The approach can be combined with the analysis of mRNA expression and of metabolite concentrations to correlate electrical signaling to specific physiological events. We describe how to use this protocol on Arabidopsis, looking at the effects of leaf wounding; however, it is broadly applicable to other plants and can be used to study other aspects of plant physiology. After wound infliction, surface potential recording takes ∼20 min per plant.
Resumo:
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.
Resumo:
Proper function of the wall of bladder requires gap junctional communication for coordinating the responses of smooth muscle (SMC) and urothelial cells exposed to urine pressure. In the rat bladder, Cx43 is expressed by SMC and urothelial cells, whereas Cx26 expression is restricted to the epithelium. We used a model of bladder outlet obstruction, in which a ligature is placed around the urethra to increase voiding pressure. Increased fluid pressure was associated with increased Cx43 and Cx26 mRNA expression and with the activation of a signaling cascade including the transcription factor c-Jun, which is a component of the AP-1 complex. The signaling pathway of the c-Jun NH2 terminal kinase (JNK) requires the presence of the scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1). Under stress conditions resulting from urine retention, we have found a reduced content of IB1/JIP-1 in urothelial cells, which in turn induced a drastic increase of JNK and AP-1 binding activities. The stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1, using a viral gene transfer approach, a condition which also resulted in a decrease in Cx26 mRNA. The data show that: 1) mechanical stress of urothelial cells activates in vivo JNK, as a consequence of a regulated expression of IB1/JIP-1 and 2) that urothelial Cx26 may be directly regulated by the AP-1 complex.
Resumo:
Background: Endothelial progenitor-derived cells (EPC) are a cell therapy tool in peripheral arterial disease and for re-endothelialization of bypasses and stents. Objective: To assess EPC behavior under flow conditions normally found in vivo. Results: EPC were isolated from human cord blood, cultured on compliant tubes and exposed in an in vitro flow system mimicking hemodynamic environments normally found in medium and large arteries. EPC exposed for 24 h to unidirectional (0.3 ± 0.1 or 6 ± 3 dynes/cm(2)) shear stress oriented along flow direction, while those exposed to bidirectional shear stress (0.3 ± 3 dynes/cm(2)) or static conditions had random orientation. Under bidirectional flow, tissue factor (TF) activity and mRNA expression were significantly increased (2.5- and 7.0-fold) compared to static conditions. Under low shear unidirectional flow TF mRNA increased 4.9 ± 0.5-fold. Similar flow-induced increases were observed for TF in mature umbilical vein-derived endothelial cells. Expression of tissue-type plasminogen activator (t-PA), urokinase (u-PA) and monocyte chemotactic protein 1 (MCP1) were reduced by 40-60% in late outgrowth endothelial progenitor-derived cells (LO-EPC) exposed to any flow environment, while MCP1, but not t-PA or u-PA, was decreased in HUVEC. Conclusions: Flow, in particular bidirectional, modifies the hemostatic balance in LO-EPC with increased TF and decreased plasminogen activator expression.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.
Resumo:
Type 2 diabetes is a polygenic and genetically heterogeneous disease . The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs 2-5). We evaluated the role of IBi in beta-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma beta-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IBi protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on i49 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (559N) that segregated with diabetes. In vitro, this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of 3-cell function.
Resumo:
Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.
Resumo:
SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.
Resumo:
Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.
Resumo:
Purpose Downregulation of TRPM1 mRNA, a transient receptor potential cation channel, has been identified in highly metastatic cutaneous melanoma cell lines. TRPM1 mRNA expression is inversely correlated with skin melanoma metastases. Recent evidence has demonstrated that the tumor suppressive activity of TRPM1 is due to miR211 situated in intron 6 of TRPM1. As we have previously identified a downregulation of TRPM1 mRNA expression in conjunctival melanoma, we decided to assess miR211 expression and its potential target gene IGF2R and KCNMA1 in conjunctival melanocytic proliferations. As MITF has been shown to regulate both TRPM1 and mir211 expression, we also assessed MITF expression in our series. Methods Expression of miR211 was assessed by in situ hybridization in 14 conjunctival naevi and 14 conjunctival melanoma. Integrity of miRNA in tissues was evaluated in each sample with the preservation of miR126 expression in endothelial cells. Protein expression of MITF, IGF2R and KCNMA1 was assessed by immunohistochemistry. Statistical analysis was performed with JUMP 8,0 software. In situ hybridization and immunohistochemistry were assessed independently by two observers. Results There were 7 subepithelial nevi and 7 compound nevi. There were 5 female and 9 male. The population mean age was 48.7 ± 6.4 years (SEM). miR211 was found in 11 nevi (79%). MITF was expressed in all the nevi. IGF2R was found in 13 nevi. KCNMA1 was found in 57% of the nevi.The melanoma group was composed of 9 females and 5 males with a mean age of 67 ± 4.8 years (SEM). Using the recent TNM classification, 5 tumors were belonging to the T1, 3 to theT2 and 6 to the T3 categories. miR211 was found in 5 melanoma (36%). There was a significant downregulation of miR211 in the melanoma compared to the nevi (p=0,0219). MITF was found in 13 melanoma (93%). IGF2R and KCNMA1 were respectively found in 71% and 77% of the melanoma. There was no significant differential expression of MITF, KCNMA1 and IGF2R between the nevi and the melanoma as well as no association between miR211 expression and protein expression of two potential target genes Conclusions In vivo miR211 is significantly reduced in conjunctival melanoma compared to conjunctival nevi. No correlation between mir211 expression and two potential target genes KCNMA1 and IGF2R was observed.