179 resultados para isolate protein
Resumo:
A general update review of the dynamic aspect of protein metabolism is presented. The effect of excess protein level on protein metabolism has been the object of a limited number of studies in man. From the information available, it appears that the primary regulatory pathway for body protein homeostasis is the process of amino acid (protein) oxidation.
Resumo:
Abstract : The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive human primary immunodeficiency. It is caused by mutations in the gene encoding the hermatopoietic specific regulator of the actin cytoskeleton Wiskott-Aldrich Syndrome Protein (WASP). Importantly, a majority of affected patients develop autoimmunity including an inflammatory bowel disease (IBD)-like disease. WASP deficient mice share many similarities with the human WAS. One of these similarities is the spontaneous development of colitis. I have focused my dissertation studies on the pathogenesis of colitis in WASP deficient mice. Prior work from our laboratory had shown that lymphocytes were required and that CD4+ T cells sufficient for colitis development. This colitis was associated with a predominant Th2-cytokine skewing. I have contributed in exploring whether the Th2 cytokine IL-4 plays a role in disease maintenance. Using two approaches to neutralize IL-4, we found that this cytokine plays a role in disease maintenance. Natural CD4*CD25*Foxp3* regulatory T cells (nTreg cells) have been implicated in the pathogenesis of several autoimmune disorders. We found that WASP deficient mice have reduced nTreg cell numbers in peripheral lymphoid organs. This was associated with functional defects in suppressing T cell proliferation and preventing colitis induced by transfer of naïve T cells into SCID recipient, which lack lymphocytes. WASP deficiency affected homing of nTreg cells to lymphoid compartments, IL-2-mediated activation and secretion of the immunomodulatory cytokine IL-10. Finally, we could prevent colitis onset via adoptive transfer of WT nTreg cells prior to colitis development. This suggests that nTreg cells dysfunction is one of the mechanisms underlying colitis development in WASP deficient mice. Future directions will aim at deciphering the role of other immune cell types, the bacterial flora, and various cytokines in colitis development in this murine model of colitis. In addition, we believe that colitis in WASP deficient mice could serve as a useful tool to evaluate nTreg cells manipulation as novel therapeutic approach for IBD.
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Resumo:
This study proposes a theoretical model describing the electrostatically driven step of the alpha 1 b-adrenergic receptor (AR)-G protein recognition. The comparative analysis of the structural-dynamics features of functionally different receptor forms, i.e., the wild type (ground state) and its constitutively active mutants D142A and A293E, was instrumental to gain insight on the receptor-G protein electrostatic and steric complementarity. Rigid body docking simulations between the different forms of the alpha 1 b-AR and the heterotrimeric G alpha q, G alpha s, G alpha i1, and G alpha t suggest that the cytosolic crevice shared by the active receptor and including the second and the third intracellular loops as well as the cytosolic extension of helices 5 and 6, represents the receptor surface with docking complementarity with the G protein. On the other hand, the G protein solvent-exposed portions that recognize the intracellular loops of the activated receptors are the N-terminal portion of alpha 3, alpha G, the alpha G/alpha 4 loop, alpha 4, the alpha 4/beta 6 loop, alpha 5, and the C-terminus. Docking simulations suggest that the two constitutively active mutants D142A and A293E recognize different G proteins with similar selectivity orders, i.e., G alpha q approximately equal to G alpha s > G alpha i > G alpha t. The theoretical models herein proposed might provide useful suggestions for new experiments aiming at exploring the receptor-G protein interface.
Resumo:
Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc) variant of SILAC (stable isotope labeling by amino acids in cell culture). pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 "clients". We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.
Resumo:
Mutations of GPCRs can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis; others occur spontaneously in human diseases. The analysis of constitutively active GPCR mutants has attracted a large interest in the past decade, providing an important contribution to our understanding of the molecular mechanisms underlying receptor function and drug action.
Resumo:
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.
Resumo:
The circumsporozoite protein (CSP), a major antigen of Plasmodium falciparum, was expressed in the slime mold Dictyostelium discoideum. Fusion of the parasite protein to a leader peptide derived from Dictyostelium contact site A was essential for expression. The natural parasite surface antigen, however, was not detected at the slime mold cell surface as expected but retained intracellularly. Removal of the last 23 amino acids resulted in secretion of CSP, suggesting that the C-terminal segment of the CSP, rather than an ectoplasmic domain, was responsible for retention. Cell surface expression was obtained when the CSP C-terminal segment was replaced by the D. discoideum contact site A glycosyl phosphatidylinositol anchor signal sequence. Mice were immunized with Dictyostelium cells harboring CSP at their surface. The raised antibodies recognized two different regions of the CSP. Anti-sporozoite titers of these sera were equivalent to anti-peptide titers detected by enzyme-linked immunosorbent assay. Thus, cell surface targeting of antigens can be obtained in Dictyostelium, generating sporozoite-like cells having potentials for vaccination, diagnostic tests, or basic studies involving parasite cell surface proteins.
Resumo:
Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.
Resumo:
Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses
Resumo:
Introduction: CD22 is expressed on most B-non-Hodgkin lymphomas (NHL); inotuzumab ozogamicin (INO) is an anti-CD22 antibody conjugated to calicheamicin. This study evaluated the safety and tolerability of INO plus R-CVP in patients (pts) with relapsed/refractory CD22+ B-NHL. Efficacy data were also collected. Methods: Part 1 of this open-label study identified a maximum tolerated dose (MTD) of INO 0.8mg/m,2 on day 2 plus R-CVP (rituximab 375mg/m,2 cyclophosphamide 750mg/m,2 and vincristine 1.4mg/m,2 on day 1; prednisone 40mg/m,2 on days 1-5) every 21 days. Subsequently, pts were enrolled in the MTD confirmation cohort (part 2, n = 10), which required a dose-limiting toxicity rate of <33% in cycle 1 and <4 pts discontinuing prior to cycle 3 due to an adverse event (AE) in the MTD expansion cohort (part 3, n = 22), which explored preliminary activity. Results: Parts 2 and 3 enrolled 32 pts: 16 pts with diffuse large B-cell lymphoma, 15 with follicular lymphoma and one with mantle cell lymphoma. Median age was 64.5 years (range 44-81 years); 34% of pts had 1 prior regimen, 34% had 2, 28% had ≥3 and 3% had none (median 2; range 0-6).Median treatment duration was five cycles (range 1-6). Part 2 confirmed the MTD as standard dose R-CVP plus INO 0.8mg/m,2; 2/10 pts had a dose-limiting toxicity (grade 3 increased ALT/AST, grade 4 neutropenia requiring G-CSF). One pt discontinued because of an AE prior to cycle 3. Common treatment-related AEs were thrombocytopenia (78%), neutropenia (66%), fatigue (50%), leukopenia (50%), nausea (41%) and lymphopenia (38%); common grade 3/4 AEs were neutropenia (63%), thrombocytopenia (53%), leukopenia (38%) and lymphopenia (31%). There was one case of treatment-related fatal pneumonia with grade 4 neutropenia. Ten pts discontinued treatment due to AEs; thrombocytopenia/delayed platelet recovery was the leading cause (grade 1/2, n = 6; grade 3/4, n = 3). Objective response rate (ORR) was 77% (n = 24/31 evaluable pts), including 26% (n=8/31) with complete response (CR); three pts had stable disease. Of the pts with follicular lymphoma, ORR was 100% (n = 15/15), including seven pts with CR. Of the pts with diffuse large B-cell lymphoma, ORR was 60% (n = 9/16), including one pt with CR. Conclusions: Results suggest that INOplus R-CVP has acceptable toxicity and promising activity in relapsed/refractory CD22+ B-NHL. The most common grade 3/4 AEs were hematologic. Follow-up for progression-free and overall survival is ongoing.
Resumo:
The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.
Resumo:
BACKGROUND: A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.