214 resultados para interaction hôte-pathogène
Resumo:
Hepatitis C virus (HCV) is an important human pathogen, persistently infecting more than 170 million individuals worldwide. Studies of the HCV life cycle have become possible with the development of cell culture systems supporting the replication of viral RNA and the production of infectious virus. However, the exact functions of individual proteins, especially of nonstructural protein 4B (NS4B), remain poorly understood. NS4B triggers the formation of specific, vesicular membrane rearrangements, referred to as membranous webs, which have been reported to represent sites of HCV RNA replication. However, the mechanism of vesicle induction is not known. In this study, a panel of 15 mutants carrying substitutions in the highly conserved NS4B C-terminal domain was generated. Five mutations had only a minor effect on replication, but two of them enhanced assembly and release of infectious virus. Ten mutants were replication defective and used for selection of pseudoreversions. Most of the pseudoreversions also localized to the highly conserved NS4B C-terminal domain and were found to restore replication competence upon insertion into the corresponding primary mutant. Importantly, pseudoreversions restoring replication competence also restored heterotypic NS4B self-interaction, which was disrupted by the primary mutation. Finally, electron microscopy analyses of membrane alterations induced by NS4B mutants revealed striking morphological abnormalities, which were restored to wild-type morphology by the corresponding pseudoreversion. These findings demonstrate the important role of the C-terminal domain in NS4B self-interaction and the formation of functional HCV replication complexes.
Resumo:
RESUME La première étape primordiale au cycle de vie du Plasmodium dans un hôte mammifère est l'invasion des hepatocytes par des sporozoites. L'infection finale des hepatocytes est précédée de la traversée de plusieurs cellules hôtes, rompant les membranes plasmiques et ayant comme résultat la sécrétion des facteurs cytotoliques dans le micro-environnement. Ce matériel endogène libéré est fortement stimulant/immunogène et peut servir de signal de danger initiant des réponses distinctes dans diverses cellules. De nos jours, le caractère essentiel et salutaire de la migration des sporozoites comme étape d'infection du Plasmodium est vivement controversée. Ainsi, notre étude a visé à caractériser l'effet de l'interaction du parasite avec ses cellules hôtes d'un point de vue immunologique. En particulier, nous avons voulu évaluer l'effet de la perte de matériel cellulaire pendant l'infection de Plasmodium sur les hepatocytes primaires de souris et sur des cultures cellulaires HepG2. Nous avons observé que les facteurs cytotoxiques dérivés des cellules endommagés activent NF-κB - un important régulateur de réponse inflammatoires -dans des cellules voisines des cellules endommagés, qui sont des cellules hôtes potentielles pour l'infection finale du parasite. Cette activation de NF-κB s'est produite peu de temps après l'infection et a mené in vitro et in vivo à une réduction d'infection de façon dépendante du temps, un effet qui a pu être compensé par l'addition de BAY11-7082, un inhibiteur spécifique de NF-κB. De plus, aucune activation de NF-κB avec des parasites SPECT-/-, incapables de traverser les hepatocytes, n'a été observée. Nous avons montré parla suite que l'activation de NF-κB induit l'expression de l'enzyme iNOS dans les hepatocytes, qui est responsable d'une diminution des hepatocytes infectés. En outre, les hepatocytes primaires des souris MyD88-/- n'ont montré ni activation de NF-κB, ni expression d'iNOS lors de l'infection, ce qui suggère la participation des membres de famille du Toll/IL-1 récepteur dans la reconnaissance des facteurs cytosoxiques. En effet, le manque de MyD88 a augmenté significativement l'infection in vitro et in vivo. D'autre part, un rôle bénéfique pour l'activation de NF-κB a été évalué. Les cellules infectées étaient plus résistantes contre l'apoptose induite par Fas (CD95/Apo-1) que les cellules non infectées ou les cellules infectées dans lesquelles NF-κB a été bloqué par BAY11-7082 in vitro. Paradoxalement, l'expression d'iNOS contribue à la protection des cellules infectées contre l'apoptose pax Fas, puisque le traitement avec l'inhibiteur spécifique SMT (S-methylisothiourea) a rendu les cellules infectées plus susceptibles à l'apoptose. Un effet bénéfique additionnel pour le parasite est que la plupart des cellules hôtes traversées présentent des peptides du parasite aux cellules T cytotoxiques spécifiques et peuvent donc réorienter la réaction immune spécifique sur les cellules non infectées. Nous montrons que les cellules hôtes endommagés par la migration du parasite induit l'inflammation, qui limite l'ampleur de l'infection. D'autre part, nos données soutiennent que la survie du parasite Plasmodium dans le foie est assurée par une augmentation de la résistance des hepatocytes contre l'apoptose. SUMMARY The first obligatory step of the Plasmodium life cycle in the mammalian host is the invasion of hepatocytes by sporozoites. Final hepatocyte infection involves the penetration of several host cells, whose plasma membranes are ruptured in the process, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory / immunogenic and can serve as a danger signal initiating distinct responses in various cells. To date, it is highly controversial whether sporozoite migration through hepatocytes is an essential and beneficial step for Plasmodium infection. Thus, our study aimed at characterizing the effect of the interaction of the parasite with its host cells from an immunological point of view In particular, we wanted to evaluate the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-κB - a main regulator of host inflammatory responses - in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-κB occurred shortly after infection and led to a reduction of infection load in a time dependent manner in vitro and in viva, an effect that could be reverted by addition of the specific NF-κB inhibitor BAY11-7082. In addition, no NF-κB activation was observed when SPECT-/- parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-κB activation causes the induction of inducible nitric oxide synthase (iNOS) expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88-/- mice showed no NF-κB activation and iNOS expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. In a further complementary series of experiments, we assessed a possible beneficial role for the activation of NF-κB. Infected cells were more resistant to Fas (CD95/Apo-1)-mediated apoptosis than uninfected cells or infected cells in which NF-κB was blocked by BAYl1-7082 in vitro. Paradoxically, iNOS expression contributes to the protection of infected cells from Fas-induced apoptosis, since treatment with the specific iNOS inhibitor SMT (S-Methylisothiourea Sulfate) rendered the infected cells more susceptible to apoptosis. An additional beneficial effect of host cell traversal for the parasite is the fact that mainly traversed cells present parasite-derived peptides to specific cytotoxic T cells and therefore may redirect the specific immune response to uninfected cells. In summary, we have shown that host cells wounded by parasite migration induce inflammation, which limits the extent of parasite infection. In addition, our data support the notion that survival of Plasmodium parasites in the liver is mediated by increasing the resistance of hepatocytes to Fas-induced apoptosis.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) affects vascular barrier function and thus increases vessel permeability. This phenomenon may be exploited to facilitate targeted drug delivery and may lead to a new clinical application of photodynamic therapy. Here, we investigate the role of leukocyte recruitment for PDT-induced vascular permeabilization. STUDY DESIGN/MATERIAL AND METHODS: Fluorescein isothiocyanate dextran (FITC-D, 2,000 kDa) was injected intravenously 120 minutes after focal PDT on striated muscle in nude mice bearing dorsal skinfold chambers (Visudyne® 800 µg/kg, fluence rate 300 mW/cm2 , light dose of 200 J/cm2). Leukocyte interaction with endothelial cells was inhibited by antibodies functionally blocking adhesion molecules ("MABS-PDT" group, n = 5); control animals had PDT but no antibody injection (group "PDT", n = 7). By intravital microscopy, we monitored leukocyte rolling and sticking in real-time before, 90 and 180 minutes after PDT. The extravasation of FITC-D from striated muscle vessels into the interstitial space was determined in vivo during 45 minutes to assess treatment-induced alterations of vascular permeability. RESULTS: PDT significantly increased the recruitment of leukocytes and enhanced the leakage of FITC-D. Neutralization of adhesion molecules before PDT suppressed the rolling of leukocytes along the venular endothelium and significantly reduced the extravasation of FITC-D as compared to control animals (156 ± 27 vs. 11 ± 2 (mean ± SEM, number of WBC/30 seconds mm vessel circumference; P < 0.05) at 90 minutes after PDT and 194 ± 21 vs. 14 ± 4 at 180 minutes after PDT). In contrast, leukocyte sticking was not downregulated by the antibody treatment. CONCLUSION: Leukocyte recruitment plays an essential role in the permeability-enhancing effect of PDT.
Resumo:
Progress in the understanding of the hepatitis C virus life cycle allowed the development of new, very promising antiviral therapies. Although these new drugs have a favourable profile in terms of efficacy, tolerance and interaction potential, their prescription in the setting of comedication and impaired renal or hepatic function remains a challenge. Here, we provide a summary of pharmacological considerations, focusing on sofosbuvir, simeprevir and daclatasvir. A better understanding of their metabolic pathways and transporters may help the prescriber to identify and manage drug interactions especially in patients under immunosuppressive or anti-HIV therapy. Recommendations for the prescription of these drugs in specific situations are also discussed.
Resumo:
Detection of viral nucleic acids is central to antiviral immunity. Recently, DAI/ZBP1 (DNA-dependent activator of IRFs/Z-DNA binding protein 1) was identified as a cytoplasmic DNA sensor and shown to activate the interferon regulatory factor (IRF) and nuclear factor-kappa B (NF-kappaB) transcription factors, leading to type-I interferon production. DAI-induced IRF activation depends on TANK-binding kinase 1 (TBK1), whereas signalling pathways and molecular components involved in NF-kappaB activation remain elusive. Here, we report the identification of two receptor-interacting protein (RIP) homotypic interaction motifs (RHIMs) in the DAI protein sequence, and show that these domains relay DAI-induced NF-kappaB signals through the recruitment of the RHIM-containing kinases RIP1 and RIP3. We show that knockdown of not only RIP1, but also RIP3 affects DAI-induced NF-kappaB activation. Importantly, RIP recruitment to DAI is inhibited by the RHIM-containing murine cytomegalovirus (MCMV) protein M45. These findings delineate the DAI signalling pathway to NF-kappaB and suggest a possible new immune modulation strategy of the MCMV.
Resumo:
The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.
Resumo:
Interaction analysis is not a prerogative of any discipline in social sciences. It has its own history within each disciplinary field and is related to specific research objects. From the standpoint of psychology, this article first draws upon a distinction between factorial and dialogical conceptions of interaction. It then briefly presents the basis of a dialogical approach in psychology and focuses upon four basic assumptions. Each of them is examined on a theoretical and on a methodological level with a leading question: to what extent is it possible to develop analytical tools that are fully coherent with dialogical assumptions? The conclusion stresses the difficulty of developing methodological tools that are fully consistent with dialogical assumptions and argues that there is an unavoidable tension between accounting for the complexity of an interaction and using methodological tools which necessarily "monologise" this complexity.
Resumo:
Empirical studies indicate that the transition to parenthood is influenced by an individual's peer group. To study the mechanisms creating interdepen- dencies across individuals' transition to parenthood and its timing we apply an agent-based simulation model. We build a one-sex model and provide agents with three different characteristics regarding age, intended education and parity. Agents endogenously form their network based on social closeness. Network members then may influence the agents' transition to higher parity levels. Our numerical simulations indicate that accounting for social inter- actions can explain the shift of first-birth probabilities in Austria over the period 1984 to 2004. Moreover, we apply our model to forecast age-specific fertility rates up to 2016.
Resumo:
Eukaryotic gene expression depends on a complex interplay between the transcriptional apparatus and chromatin structure. We report here a yeast model system for investigating the functional interaction between the human estrogen receptor (hER) and CTF1, a member of the CTF/NFI transcription factor family. We show that a CTF1-fusion protein and the hER transactivate a synthetic promoter in yeast in a synergistic manner. This interaction requires the proline-rich transactivation domain of CTF1. When the natural estrogen-dependent vitellogenin B1 promoter is tested in yeast, CTF1 and CTF1-fusion proteins are unable to activate transcription, and no synergy is observed between hER, which activates the B1 promoter, and these factors. Chromatin structure analysis on this promoter reveals positioned nucleosomes at -430 to -270 (+/-20 bp) and at -270 to - 100 (+/-20 bp) relative to the start site of transcription. The positions of the nucleosomes remain unchanged upon hormone-dependent transcriptional activation of the promoter, and the more proximal nucleosome appears to mask the CTF/NFI site located at - 101 to -114. We conclude that a functional interaction of hER with the estrogen response element located upstream of a basal promoter occurs in yeast despite the nucleosomal organization of this promoter, whereas the interaction of CTF1 with its target site is apparently precluded by a nucleosome.
Resumo:
NK cells can kill MHC-different or MHC-deficient but not syngeneic MHC-expressing target cells. This MHC class I-specific tolerance is acquired during NK cell development. MHC recognition by murine NK cells largely depends on clonally distributed Ly49 family receptors, which inhibit NK cell function upon ligand engagement. We investigated whether these receptors play a role for the development of NK cells and provide evidence that the expression of a Ly49 receptor transgene on developing NK cells endowed these cells with a significant developmental advantage over NK cells lacking such a receptor, but only if the relevant MHC ligand was present in the environment. The data suggest that the transgenic Ly49 receptor accelerates and/or rescues the development of NK cells which would otherwise fail to acquire sufficient numbers of self-MHC-specific receptors. Interestingly, the positive effect on NK cell development is most prominent when the MHC ligand is simultaneously present on both hemopoietic and nonhemopoietic cells. These findings correlate with functional data showing that MHC class I ligand on all cells is required to generate functionally mature NK cells capable of reacting to cells lacking the respective MHC ligand. We conclude that the engagement of inhibitory MHC receptors during NK cell development provides signals that are important for further NK cell differentiation and/or maturation.