133 resultados para gossip, dissemination, network, algorithms
Resumo:
The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
For the last 2 decades, supertree reconstruction has been an active field of research and has seen the development of a large number of major algorithms. Because of the growing popularity of the supertree methods, it has become necessary to evaluate the performance of these algorithms to determine which are the best options (especially with regard to the supermatrix approach that is widely used). In this study, seven of the most commonly used supertree methods are investigated by using a large empirical data set (in terms of number of taxa and molecular markers) from the worldwide flowering plant family Sapindaceae. Supertree methods were evaluated using several criteria: similarity of the supertrees with the input trees, similarity between the supertrees and the total evidence tree, level of resolution of the supertree and computational time required by the algorithm. Additional analyses were also conducted on a reduced data set to test if the performance levels were affected by the heuristic searches rather than the algorithms themselves. Based on our results, two main groups of supertree methods were identified: on one hand, the matrix representation with parsimony (MRP), MinFlip, and MinCut methods performed well according to our criteria, whereas the average consensus, split fit, and most similar supertree methods showed a poorer performance or at least did not behave the same way as the total evidence tree. Results for the super distance matrix, that is, the most recent approach tested here, were promising with at least one derived method performing as well as MRP, MinFlip, and MinCut. The output of each method was only slightly improved when applied to the reduced data set, suggesting a correct behavior of the heuristic searches and a relatively low sensitivity of the algorithms to data set sizes and missing data. Results also showed that the MRP analyses could reach a high level of quality even when using a simple heuristic search strategy, with the exception of MRP with Purvis coding scheme and reversible parsimony. The future of supertrees lies in the implementation of a standardized heuristic search for all methods and the increase in computing power to handle large data sets. The latter would prove to be particularly useful for promising approaches such as the maximum quartet fit method that yet requires substantial computing power.
Online teaching of inflammatory skin pathology by a French-speaking international university network
Resumo:
Introduction: Developments in technology, webbased teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media like radiologic images, videos, clinical and macroscopic photographs and whole slides imaging is now accessible to almost every university. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of work, time and resources needed. In this perspective, a French national university network was initiated in 2011 to build mutualised online teaching pathology modules with clinical cases and tests. This network has been extended to an international level in 2012-2014 (Quebec, Switzerland and Ivory Coast). Method: One of the first steps of the international project was to build a learning module on inflammatory skin pathology intended for interns and residents of pathology and dermatology. A pathology resident from Quebec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform (http: //moodle.sorbonne-paris-cite.fr) under the supervision of two dermatopathologists (BV, MB). The learning module contains text, interactive clinical cases, tests with feedback, whole slides images (WSI), images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers. Results: The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 WSI and more than 50 micro and clinical photographs. The whole learning module is currently being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in spring 2014. The experience and knowledge gained from that work will be transferred to the next international fellowship intern whose work will be aimed at creating lung and breast pathology learning modules. Conclusion: The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated, completed and its use and existence needs to be promoted by the different actors in pathology. Of the great benefits of that kind of project are the international partnerships and connections that have been established between numerous Frenchspeaking universities and pathologists with the common goals of promoting education in pathology and the use of technology including whole slide imaging. * The Moodle website is hosted by PRES Sorbonne Paris Cité, and financial supports for hardware have been obtained from UNF3S (http://www.unf3s.org/) and PRES Sorbonne Paris Cité. Financial support for international fellowships has been obtained from CFQCU (http://www.cfqcu.org/).
Resumo:
Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.
Resumo:
Background: This study analyzed prognostic factors and treatment outcomes of primary thyroid lymphoma. Patients and Methods: Data were retrospectively collected for 87 patients (53 stage I and 34 stage II) with median age 65 years. Fifty-two patients were treated with single modality (31 with chemotherapy alone and 21 with radiotherapy alone) and 35 with combined modality treatment. Median follow-up was 51 months. Results: Sixty patients had aggressive lymphoma and 27 had indolent lymphoma. The 5- and 10-year overall survival (OS) rates were 74% and 71%, respectively, and the disease-free survival (DFS) rates were 68% and 64%. Univariate analysis revealed that age, tumor size, stage, lymph node involvement, B symptoms, and treatment modality were prognostic factors for OS, DFS, and local control (LC). Patients with thyroiditis had significantly better LC rates. In multivariate analysis, OS was influenced by age, B symptoms, lymph node involvement, and tumor size, whereas DFS and LC were influenced by B symptoms and tumor size. Compared with single modality treatment, patients treated with combined modality had better 5-year OS, DFS, and LC. Conclusions: Combined modality leads to an excellent prognosis for patients with aggressive lymphoma but does not improve OS and LC in patients with indolent lymphoma.
Resumo:
PURPOSE/OBJECTIVE(S): Primary bone lymphoma (PBL) represents less than 1% of all malignant lymphomas, and 4-5% of all extranodal lymphomas. In this study, we assessed the disease profile, outcome, and prognostic factors in patients with stage I and II PBL. MATERIALS/METHODS: Between 1987 and 2008, 116 consecutive patients with PBL treated in 13 RCNinstitutions were included in this study. Inclusion criteriawere: age.17 yrs, PBLin stage I and II, andminimum6months follow-up. The median agewas 51 yrs (range: 17-93).Diagnosticwork-up included plain boneXray (74%of patients), scintigraphy (62%), CT-scan (65%),MRI (58%), PET (18%), and bone-marrow biopsy (84%).All patients had biopsy-proven confirmation of non-Hodgkin's lymphoma (NHL). The histopathological type was predominantly diffuse large B-cell lymphoma (78%) and follicular lymphoma (6%), according to theWHOclassification. One hundred patients had a high-grade, 7 intermediate and 9 low-gradeNHL. Ninety-three patients had anAnn-Arbor stage I, and 23 had a stage II. Seventy-seven patients underwent chemoradiotherapy (CXRT), 12 radiotherapy (RT) alone, 10 chemotherapy alone (CXT), 9 surgery followed by CXRT, 5 surgery followed by CXT, and 2 surgery followed by RT. One patient died before treatment.Median RT dosewas 40Gy (range: 4-60).Themedian number ofCXTcycleswas 6 (range, : 2-8).Median follow-upwas 41months (range: 6-242). RESULTS: Following treatment, the overall response rate was 91% (CR 74%, PR 17%). Local recurrence was observed in 12 (10%) patients, and systemic recurrence in 17 (15%) patients. Causes of death included disease progression in 16, unrelated disease in 6, CXT-related toxicity in 1, and secondary cancer in 2 patients. The 5-yr overall survival (OS), disease-free survival (DFS), lymphoma- specific survival (LSS), and local control (LC) were 76%, 69%, 78%, and 92%, respectively. In univariate analyses (log-rank test), favorable prognostic factors for survival were: age\50 years (p = 0.008), IPI score #1 (p = 0.009), complete response (p\0.001), CXT (p = 0.008), number of CXT cycles $6 (p = 0.007), and RT dose . 40 Gy (p = 0.005). In multivariate analysis age, RT dose, complete response, and absence of B symptoms were independent factors influencing the outcome. There were 3 patients developing grade 3 or more (CTCAE.V3.0) toxicities. CONCLUSIONS: This large multicenter study, confirms the relatively good prognosis of early stage PBL, treated with combined CXRT. Local control was excellent, and systemic failure occurred infrequently. A sufficient dose of RT (. 40 Gy) and complete CXT regime (. 6 cycles) were associated with a better outcome. Combined modality appears to be the treatment of choice.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Resumo:
The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.