172 resultados para foreign models
Resumo:
Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]
Resumo:
Aim The imperfect detection of species may lead to erroneous conclusions about species-environment relationships. Accuracy in species detection usually requires temporal replication at sampling sites, a time-consuming and costly monitoring scheme. Here, we applied a lower-cost alternative based on a double-sampling approach to incorporate the reliability of species detection into regression-based species distribution modelling.Location Doñana National Park (south-western Spain).Methods Using species-specific monthly detection probabilities, we estimated the detection reliability as the probability of having detected the species given the species-specific survey time. Such reliability estimates were used to account explicitly for data uncertainty by weighting each absence. We illustrated how this novel framework can be used to evaluate four competing hypotheses as to what constitutes primary environmental control of amphibian distribution: breeding habitat, aestivating habitat, spatial distribution of surrounding habitats and/or major ecosystems zonation. The study was conducted on six pond-breeding amphibian species during a 4-year period.Results Non-detections should not be considered equivalent to real absences, as their reliability varied considerably. The occurrence of Hyla meridionalis and Triturus pygmaeus was related to a particular major ecosystem of the study area, where suitable habitat for these species seemed to be widely available. Characteristics of the breeding habitat (area and hydroperiod) were of high importance for the occurrence of Pelobates cultripes and Pleurodeles waltl. Terrestrial characteristics were the most important predictors of the occurrence of Discoglossus galganoi and Lissotriton boscai, along with spatial distribution of breeding habitats for the last species.Main conclusions We did not find a single best supported hypothesis valid for all species, which stresses the importance of multiscale and multifactor approaches. More importantly, this study shows that estimating the reliability of non-detection records, an exercise that had been previously seen as a naïve goal in species distribution modelling, is feasible and could be promoted in future studies, at least in comparable systems.
Resumo:
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.
Resumo:
Increasing antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the activity of fosfomycin alone and in combination with vancomycin, daptomycin, rifampin, and tigecycline against MRSA (ATCC 43300) in a foreign-body (implantable cage) infection model. The MICs of the individual agents were as follows: fosfomycin, 1 μg/ml; daptomycin, 0.125 μg/ml; vancomycin, 1 μg/ml; rifampin, 0.04 μg/ml; and tigecycline, 0.125 μg/ml. Microcalorimetry showed synergistic activity of fosfomycin and rifampin at subinhibitory concentrations against planktonic and biofilm MRSA. In time-kill curves, fosfomycin exhibited time-dependent activity against MRSA with a reduction of 2.5 log10 CFU/ml at 128 × the MIC. In the animal model, planktonic bacteria in cage fluid were reduced by <1 log10 CFU/ml with fosfomycin and tigecycline, 1.7 log10 with daptomycin, 2.2 log10 with fosfomycin-tigecycline and fosfomycin-vancomycin, 3.8 log10 with fosfomycin-daptomycin, and >6.0 log10 with daptomycin-rifampin and fosfomycin-rifampin. Daptomycin-rifampin cured 67% of cage-associated infections and fosfomycin-rifampin cured 83%, whereas all single drugs (fosfomycin, daptomycin, and tigecycline) and rifampin-free fosfomycin combinations showed no cure of MRSA cage-associated infections. No emergence of fosfomycin resistance was observed in animals; however, a 4-fold increase in fosfomycin MIC (from 2 to 16 μg/ml) occurred in the fosfomycin-vancomycin group. In summary, the highest eradication of MRSA cage-associated infections was achieved with fosfomycin in combination with rifampin (83%). Fosfomycin may be used in combination with rifampin against MRSA implant-associated infections, but it cannot replace rifampin as an antibiofilm agent.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.
Resumo:
To study different temporal components on cancer mortality (age, period and cohort) methods of graphic representation were applied to Swiss mortality data from 1950 to 1984. Maps using continuous slopes ("contour maps") and based on eight tones of grey according to the absolute distribution of rates were used to represent the surfaces defined by the matrix of various age-specific rates. Further, progressively more complex regression surface equations were defined, on the basis of two independent variables (age/cohort) and a dependent one (each age-specific mortality rate). General patterns of trends in cancer mortality were thus identified, permitting definition of important cohort (e.g., upwards for lung and other tobacco-related neoplasms, or downwards for stomach) or period (e.g., downwards for intestines or thyroid cancers) effects, besides the major underlying age component. For most cancer sites, even the lower order (1st to 3rd) models utilised provided excellent fitting, allowing immediate identification of the residuals (e.g., high or low mortality points) as well as estimates of first-order interactions between the three factors, although the parameters of the main effects remained still undetermined. Thus, the method should be essentially used as summary guide to illustrate and understand the general patterns of age, period and cohort effects in (cancer) mortality, although they cannot conceptually solve the inherent problem of identifiability of the three components.
Resumo:
BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Resumo:
ABSTRACT : Research in empirical asset pricing has pointed out several anomalies both in the cross section and time series of asset prices, as well as in investors' portfolio choice. This dissertation aims to discover the forces driving some of these "puzzling" asset pricing dynamics and portfolio decisions observed in the financial market. Through the dissertation I construct and study dynamic general equilibrium models of heterogeneous investors in the presence of frictions and evaluate quantitatively their implications for financial-market asset prices and portfolio choice. I also explore the potential roots of puzzles in international finance. Chapter 1 shows that, by introducing jointly endogenous no-default type of borrowing constraints and heterogeneous beliefs in a dynamic general-equilibrium economy, many empirical features of stock return volatility can be reproduced. While most of the research on stock return volatility is empirical, this paper provides a theoretical framework that is able to reproduce simultaneously the cross section and time series stylized facts concerning stock returns and their volatility. In contrast to the existing theoretical literature related to stock return volatility, I don't impose persistence or regimes in any of the exogenous state variables or in preferences. Volatility clustering, asymmetry in the stock return-volatility relationship, and pricing of multi-factor volatility components in the cross section all arise endogenously as a consequence of the feedback between the binding of no-default constraints and heterogeneous beliefs. Chapters 2 and 3 explore the implications of differences of opinion across investors in different countries for international asset pricing anomalies. Chapter 2 demonstrates that several international finance "puzzles" can be reproduced by a single risk factor which captures heterogeneous beliefs across international investors. These puzzles include: (i) home equity preference; (ii) the dependence of firm returns on local and foreign factors; (iii) the co-movement of returns and international capital flows; and (iv) abnormal returns around foreign firm cross-listing events in the local market. These are reproduced in a setup with symmetric information and in a perfectly integrated world with multiple countries and independent processes producing the same good. Chapter 3 shows that by extending this framework to multiple goods and correlated production processes; the "forward premium puzzle" arises naturally as a compensation for the heterogeneous expectations about the depreciation of the exchange rate held by international investors. Chapters 2 and 3 propose differences of opinion across international investors as the potential resolution of several international finance `puzzles'. In a globalized world where both capital and information flow freely across countries, this explanation seems more appealing than existing asymmetric information or segmented markets theories aiming to explain international finance puzzles.
Resumo:
The method of stochastic dynamic programming is widely used in ecology of behavior, but has some imperfections because of use of temporal limits. The authors presented an alternative approach based on the methods of the theory of restoration. Suggested method uses cumulative energy reserves per time unit as a criterium, that leads to stationary cycles in the area of states. This approach allows to study the optimal feeding by analytic methods.