125 resultados para floral origin
Resumo:
BACKGROUND AND PURPOSE: Thromboxane prostaglandin receptors have been implicated to be involved in the atherosclerotic process. We assessed whether Terutroban, a thromboxane prostaglandin receptor antagonist, affects the progression of atherosclerosis, as measured by common carotid intima-media thickness and carotid plaques. METHODS: A substudy was performed among 1141 participants of the aspirin-controlled Prevention of Cerebrovascular and Cardiovascular Events of Ischemic Origin with Terutroban in Patients with a History of Ischemic Stroke or Transient Ischemic Attack (PERFORM) trial. Common carotid intima-media thickness and carotid plaque occurrence was measured during a 3-year period. RESULTS: Baseline characteristics did not differ between Terutroban (n=592) and aspirin (n=549) treated patients and were similar as in the main study. Mean study and treatment duration were similar (28 and 25 months, respectively). In the Terutroban group, the annualized rate of change in common carotid intima-media thickness was 0.006 mm per year (95% confidence interval, -0.004 to 0.016) and -0.005 mm per year (95% confidence interval, -0.015 to 0.005) in the aspirin group. There was no statistically significant difference between the groups in the annualized rate of change of common carotid intima-media thickness (0.011 mm per year; 95% confidence interval, -0.003 to 0.025). At 12 months of follow-up, 66% of Terutroban patients had no emergent plaques, 31% had 1 to 2 emergent plaques, and 3% had ≥3 emergent plaques. In the aspirin group, the corresponding percentages were 64%, 32%, and 4%. Over time, there was no statistically significant difference in the number of emergent carotid plaques between treatment modalities (rate ratio, 0.91; 95% confidence interval, 0.77-1.07). CONCLUSIONS: Compared with aspirin, Terutroban did not beneficially affect progression of carotid atherosclerosis among well-treated patients with a history of ischemic stroke or transient ischemic attacks with an internal carotid stenosis <70%. CLINICAL TRIAL REGISTRATION URL: http://www.controlled-trials.com. Unique identifier: ISRCTN66157730.
Resumo:
BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
Resumo:
As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.