178 resultados para exercise optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of glucose administered with amino acids before and during exercise on hepatic ureagenesis. Eight mongrel dogs subjected to treadmill running for 150 minutes at 10 km/h on a 12% incline were intravenously infused with either a mixture of amino acids and glucose (AAG) or amino acids alone (AA). The infusion was started 60 minutes before exercise and continued until the end of exercise. The rate of urinary urea excretion increased after infusion of both AAG and AA. However, the rate of urinary urea excretion was significantly lower in the AAG group versus the AA group during the first 1.5 hours of the recovery period ([R0 to R90] 514+/-24 v 637+/-24 mg/h, mean+/-SE, P < .05). Moreover, hepatic urea output was decreased during AAG versus AA infusion (229+/-62 v 367+/-55 microg/kg/min, P < .05). Hepatic glucose production during exercise was also significantly lower in AAG versus AA infusion (354+/-54 v 589+/-56 mg/kg, P < .05). On the other hand, no difference was observed in hepatic total amino acid uptake between the groups. Thus, these results indicate that AAG administered before and during exercise appears to reduce hepatic ureagenesis due to reduced hepatic gluconeogenesis as compared with administration of AA alone. These findings also suggest that nitrogen retention is enhanced by glucose administered during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven elderly male subjects (69 +/- 3 yr, 67.8 +/- 9.2 kg, 24.5 +/- 3.6% body fat) lived for 12 consecutive weeks in a metabolic unit and maintained their weight with two different diets fed for 6 weeks each: Diet A, consisted of their habitual protein intake as determined on the outside by a dietary record (mean +/- SD, 1.12 +/- 0.22 g/kg d). Diet B was an isocaloric diet with reduced protein intake (70 mgN/kg d, i.e., 0.44 g protein/kg d) at the level of physiological protein requirement [7]. After 3 weeks on each diet, the thermogenic response to single meals A and B containing 38% of weight maintenance energy for each subject (731-994 kcal) was studied by indirect calorimetry under two situations: (1) at rest over a 4 hr period and (2) during graded exercise on a bicycle ergometer at four stepwise workloads (0,80, 200, and 300 kg/min). A postabsorptive control exercise was also performed in order to assess the net effect of the meal during exercise. Eating alone increased the energy expenditure by +0.18 +/- 0.07 kcal/min with meal A and +0.13 +/- 0.06 kcal/min with meal B. There was a positive correlation (r = 0.84, p less than 0.01) between the % energy derived from protein and the thermogenic response expressed as % of the energy content of test meal. Exercise failed to influence the thermogenic response to meals since the overall net increase in energy expenditure induced by the meals while exercising was not different from that obtained at rest: +0.22 +/- 0.17 kcal/min and +0.15 +/- 0.13 kcal/min with meal A and meal B, respectively. This study failed to show any interaction between exercise and postprandial thermogenesis in elderly individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption ([Formula: see text]) 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were -2±27% of [Formula: see text] with SIN, -4±32 with P3 and -4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24-49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5-12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We hypothesize that untrained subjects can benefit from a greater cardiovascular stimulation than trained athletes, resembling classical aerobic-type activity, in addition to eliciting strength gains.METHODS: 3 groups of male subjects, inactive (SED), endurance trained (END) and strength trained (STR) underwent fitness (VO2max) and lower-body strength tests (isokinetic). Subjects were submitted to a session of oscillating VT, composed of 3 exercises (isometric half-squat, dynamic squat, dynamic squat with added load), each of 3 minutes duration, and repeated at 3 vibration frequencies (20, 26 and 32 Hz). VO2, heart rate and Borg scale were monitored.RESULTS: 27 healthy subjects (10 SED, 9 END and 8 STR), mean age 24.5 (SED), 25.0 (STR) and 29.8 (END) were included. VO2max was significantly different as expected (47.9 vs. 52.9 vs. 63.9 mL?min-1?kg-1, resp. for SED, STR and END). Isokinetic dominant leg extensors strength was higher in STR (3.32 N?m?kg-1 vs. 2.60 and 2.74 in SED and END). During VT, peak oxygen consumption (% of VO2max) attained was 59.3 in SED, 50.8 in STR and 48.0 in END (P<0.001 between SED and other subjects). Peak heart rate (% of heart rate max) was 82.7 in SED, 80.4 in STR and 72.4 in END. In SED, dynamic exercises without extra load elicited 51.0 % of VO2max and 72.1 % of heart rate max, and perceived effort reached 15.1/20.CONCLUSIONS: VT is an unconventional type of exercise, known to enhance strength, bone density, balance and flexibility. Users are attracted by the relative passivity. In SED, VT elicits sufficient cardiovascular response to benefit overall fitness in addition to the strength effects. VT's higher acceptance as an exercise in sedentary people, compared to jogging or cycling, can lead to better adherence to physical activity. Although long-term effects of VT on health are not available, we believe this type of mixed aerobic and resistance-type exercise can be beneficial on multiple health parameters, especially cardiovascular health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol (ethanol) is consumed on a daily basis by a large fraction of the population, and in many countries, light-to-moderate alcohol consumption is considered as an integral part of the diet. Although the relationship between alcohol intake and obesity is controversial, regular consumption of alcohol, through its effects in suppressing fat oxidation, is regarded as a risk factor for weight gain, increased abdominal obesity and hypertriglyceridemia. Indeed, alcohol taken with a meal leads to an increase in postprandial lipemia-an effect on postprandial metabolism that is opposite to that observed with exercise. Furthermore, although regular exercise training and/or a preprandial exercise session reduce postprandial lipemia independently of alcohol ingestion, the exercise-induced reduction in postprandial lipemia is nonetheless less pronounced when alcohol is also consumed with the meal. Whether or not alcohol influences exercise and sport performance remains contradictory. It is believed that alcohol has deleterious effects on the performance, although it may contribute to reduce pain and anxiety. The alcohol effects on sports performance depend on the type and dosage of alcohol, acute vs chronic administration, the alcohol elimination rate as well as the type of exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A headspace solid-phase microextraction procedure (HS-SPME) was developed for the profiling of traces present in 3,4-methylenedioxymethylampethamine (MDMA). Traces were first extracted using HS-SPME and then analyzed by gas chromatography-mass spectroscopy (GC-MS). The HS-SPME conditions were optimized using varying conditions. Optimal results were obtained when 40 mg of crushed MDMA sample was heated at 80 °C for 15 min, followed by extraction at 80 °C for 15 min with a polydimethylsiloxane/divinylbenzene coated fibre. A total of 31 compounds were identified as traces related to MDMA synthesis, namely precursors, intermediates or by-products. In addition some fatty acids used as tabletting materials and caffeine used as adulterant, were also detected. The use of a restricted set of 10 target compounds was also proposed for developing a screening tool for clustering samples having close profile. 114 seizures were analyzed using an SPME auto-sampler (MultiPurpose Samples MPS2), purchased from Gerstel GMBH & Co. (Germany), and coupled to GC-MS. The data was handled using various pre-treatment methods, followed by the study of similarities between sample pairs based on the Pearson correlation. The results show that HS-SPME, coupled with the suitable statistical method is a powerful tool for distinguishing specimens coming from the same seizure and specimens coming from different seizures. This information can be used by law enforcement personnel to visualize the ecstasy distribution network as well as the clandestine tablet manufacturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Exposure to hypoxia leads to several reactions of the organism, which try to compensate the reduced oxygen level in the blood. Acute response is characterized by an increase in pulmonary ventilation (Hypoxia Ventilatory Response, HVR) and in cardiac output (cardiac response to hypoxia). Heart rate (HR) at rest and during exercise is higher at high altitude than at sea level, whereas HRmax is lower. These cardiac adaptations are partially explained by an increased sympathetic stimulation associated with a reduced parasympathetic tone (12). The precise mechanisms of HRmax decline in acute hypoxia are however still to be identified, although several hypothesis have been suggested, such as a direct effect of hypoxia on the electrophysiological properties, an influence of skeletal maximal VO2 or a modulation of the autonomic nervous system (8). Some authors have reported that endurance trained athletes present an increased sensitivity to hypoxia shown by a large reduction in VO2max and an important decrease in arterial saturation. (9,11, 13) A hypoxia test can assess the sensibility of chemoreceptors to the reduction of oxygen by calculating hypoxic ventilatory and cardiac responses, knowing that low sensibility is correlated with poor acclimatization. Two parameters results from the differences in ventilation (and heart rate) divided by the difference in the arterial oxygen saturation between normoxia and hypoxia (18). Objective The hypothesis tested by this study is that parasympathetic reactivation after moderate effort in hypoxic condition can be used as a marker of individual sensibility to hypoxia. Parasympathetic reactivation is a marker of vagal tone that predict endurance capacity and aerobic fitness (2,7). Methods Subjects This study uses data obtained from two groups of athletes participating into two larger studies about adaptation to hypoxia. One group is composed of elite athletes (Swiss ski mountaineering team), the other one of mid-level athletes (ski mountaineering amateurs). The particularity of this target population is that they often train at high altitude, and therefore could show a better response to hypoxia than athleltes of other disciplines. Protocol The athletes performed a submaximal exercise (6min run at 9 km/h, flat) followed by 10 min of seated rest either in an hypoxic chamber (simulated altitude of 3000m) or in normoxic conditions. During the resting phase parasympathetic reactivation was assessed by beat-to-beat HR measurements.A test of tolerance to altitude was also performed. Analysis Parasympathetic reactivation, assessed by the calculation of the root mean square of successive differences in the R-R intervals (RMSSD)(4), is compared to individual responses at altitude, in order to appreciate the correlation between the two phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The major objective of this study was to investigate the effects of several days of intense exercise on growth hormone (hGH) testing using the World Anti-Doping Agencies hGH isoform differential immunoassays. Additionally the effects of circadian variation and exercise type on the isoform ratios were also investigated. STUDY DESIGN: 15 male athletes performed a simulated nine day cycling stage race. Blood samples were collected twice daily over a period of 15days (stage race+three days before and after). hGH isoforms were analysed by the official WADA immunoassays (CMZ Assay GmbH). RESULTS: All measured isoform ratios were far below the WADA decision limits for an adverse analytical finding. Changes in the isoform ratios could not be clearly connected to circadian variation, exercise duration or intensity. CONCLUSIONS: The present study demonstrates that the hGH isoform ratios are not significantly affected by exercise or circadian variation. We demonstrated that heavy, long term exercise does not interfere with the decision limits for an adverse analytical finding.