215 resultados para energy landscape
Resumo:
Is the extremely high oxygen consumption of shrews due to an unusually high basal metabolism? In an attempt to answer this long-standing question, we have measured the oxygen consumption of 13 species of shrews of different origin: from Europe - Sorex araneus, S. Minutus, Neomys fodiens, Crocidura russula, and Suncus etruscus; from Africa - Crocidura bottegi, C. bicolor, C. jouvenetae; C. poensis, C. theresae, C. Wimmeri, C. flavescens, and C. giffardi, The measurements, taken over a period of 20-30 minutes, were made in small, closed-system chambers at 25°C. The metabolic rat our shrews of the subfamily Soricinae lies between the eman and minimum values of the Soricini (M=126.2 W0.52 cal/h and M=82.6 W0.53 cal/h, respectively), as recorded in the literature. Zhe average for the African Crocidurinae is much lower (M= 43.6 W0.67). The metabolic rate of the European Croccidura russula agrees with that of the African species. Thus, the Crocidurinae are characterized by a relatively low metabolic rate; the Soricinae, and in particular the tribe of the Soricini, by an extremely high metabolic rate. The tribes Neomyini and Blarinini occupy an intermediate position. These differences are also to be found at the level of the basal metabolism. This main difference between the two sub-families can most likely be explained by evolution in geographical isolation under differential climatic conditions: the Crocidurinae having evolved in tropical Africa and the Soricinae in temperate Eurasia
Resumo:
La fragmentation est un des mécanismes opérant lors d'avalanche rocheuses. La quantification de l'énergie associée à ce mécanisme permettrait d'apprécier l'influence de celui-ci sur la phase post-rupture d'une avalanche rocheuse. Dans cet article, les distributions des tailles des blocs du massif rocheux et des débris sont présentées et comparées pour neuf cas d'avalanches rocheuses : cinq dans les montagnes Rocheuses canadiennes et quatre dans les Alpes européennes. Des degrés de fragmentation ont pu être estimés. Pour évaluer l'énergie de fragmentation, deux méthodes on été examinées : l'une est basée sur l'énergie de concassage et l'autre est basée sur l'énergie de sautage utilisée dans le domaine minier. Les résultats obtenus portent à croire qu'il y aurait une relation entre l'indice de réduction de taille (Rr = D50/d50) et l'énergie potentielle par unité de volume, normalisée par la résistance au double poinçonnement (?HG/?c). Les énergies de fragmentation calculées pour les neuf cas étudiés donne en moyenne 20 % de l'énergie potentielle. Une relation empirique entre Rr et ?HG/?c est proposée, et est par la suite utilisée pour définir un indice de désintégration (ID). Cet indice reflète la physique du processus de désintégration puisqu'il considère que l'indice de réduction de taille est fonction de l'énergie dissipée et de la résistance de la roche. Ces facteurs connus depuis longtemps n'avaient jamais été présentés d'une façon cohérente pour des cas d'avalanches rocheuses.Mots clés : avalanches rocheuses, désintégration, énergie de fragmentation, Rocheuses canadiennes, Alpes européennes.
Resumo:
The thermogenic response induced by ethanol ingestion in humans has not been extensively studied. This study was designed to determine the thermic effect of ethanol added to a normal diet in healthy nonalcoholic subjects, using indirect calorimetry measurements over a 24-h period in a respiration chamber. The thermic effect of ethanol was also measured when ethanol was ingested in the fasting state, using a ventilated hood system during a 5-h period. Six subjects ingested 95.6 +/- 1.8 (SE) g ethanol in 1 day partitioned over three meals; there was a 5.5 +/- 1.2% increase in 24-h energy expenditure compared with a control day in which all conditions were identical except that no ethanol was consumed. The calculated ethanol-induced thermogenesis (EIT) was 22.5 +/- 4.7% of the ethanol energy ingested. Ingestion of 31.9 +/- 0.6 g ethanol in the fasting state led to a 7.4 +/- 0.6% increase in energy expenditure over baseline values, and the calculated EIT was 17.1 +/- 2.2%. It is concluded that in healthy nonalcoholic adults ethanol elicits a thermogenic response equal to approximately 20% of the ethanol energy. Thus the concept of the apparently inefficient utilization of ethanol energy is supported by these results which show that only approximately 80% of the ethanol energy is used as metabolizable energy for biochemical processes in healthy nonalcoholic moderate ethanol consumers.
Resumo:
BACKGROUND: Psychological stress negatively influences food intake and food choices, thereby contributing to the development of childhood obesity. Physical activity can also moderate eating behavior and influence calorie intake. However, it is unknown if acute physical activity influences food intake and overall energy balance after acute stress exposure in children. We therefore investigated the impact of acute physical activity on overall energy balance (food intake minus energy expenditure), food intake, and choice in the setting of acute social stress in normal weight (NW) and overweight/obese (OW/OB) children as well as the impact of psychological risk factors. METHOD: After receiving written consent from their parents, 26 NW (BMI < 90(th) percentile) and 24 7-to 11-year-old OW (n = 5)/OB (n = 19, BMI ≥ 90(th) percentile) children were randomly allocated using computer-generated numbers (1:1, after stratification for weight status) to acute moderate physical or to sedentary activity for 30 min. Afterwards, all children were exposed to an acute social stressor. Children and their parents completed self-report questionnaires. At the end of the stressor, children were allowed to eat freely from a range of 12 different foods (6 sweet/6 salty; each of low/high caloric density). Energy balance, food intake/choice and obesity-related psychological risk factors were assessed. RESULTS: Lower overall energy balance (p = 0.019) and a decreased choice of low density salty foods (p < 0.001) in NW children compared with OW/OB children was found after acute moderate physical activity but not sedentary activity. Independent of their allocation, OW/OB children ate more high density salty foods (104 kcal (34 to 173), p = 0.004) following stress. They scored higher on impulsive behavior (p = 0.005), restrained eating (p < 0.001) and parental corporal punishment (p = 0.03), but these psychological factors were not related to stress-induced food intake/choice. Positive parenting tended to be related to lower intake of sweet high density food (-132 kcal, -277 to 2, p = 0.054). CONCLUSIONS: In the setting of stress, acute moderate physical activity can address energy balance in children, a benefit which is especially pronounced in the OW/OB. Positive parenting may act as a protective factor preventing stress-induced eating of comfort food. TRIAL REGISTRATION: clinicaltrials.gov NCT01693926 The study was a pilot study of a project funded by the Swiss National Science Foundation (CRSII3_147673).
Resumo:
The magnitude of variability in resting energy expenditure (REE) during the day was assessed in nine healthy young subjects under two nutritional conditions: 1) mixed nutrient (53% carbohydrate, 30% fat, 17% protein) enteral feeding at an energy level corresponding to 1.44 REE; and 2) enteral fasting, with only water allowed. In each subject, six 30-min measurements of REE were performed using indirect calorimetry (hood system) at 90-min intervals from 9 AM to 5 PM. The mean REE and respiratory quotient were significantly (p less than .01) greater during feeding than during fasting (1.08 +/- 0.07 [SEM] vs. 1.00 +/- 0.06 kcal/min and 0.874 +/- 0.007 vs. 0.829 +/- 0.008 kcal/min, respectively). Mean postprandial thermogenesis was 4.9 +/- 0.4% of metabolizable energy administered. The intraindividual variability of REE throughout the day, expressed as the coefficient of variation, ranged from 0.7% to 2.0% in the fasting condition and from 1.2% to 4.1% in the feeding condition. There was no significant difference between the REE measured in the morning and that determined in the afternoon.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
A short review has been made of the experimental studies performed in man, in which the effect of dexfenfluramine (D-F) on resting energy expenditure has been explored. It appears that the extent to which D-F possesses thermogenic properties (in addition to its anorectic effect) still remains controversial. Some investigators found either no significant increase in energy expenditure in response to the drug or a moderate effect in post-absorptive and/or postprandial state. It may be reasonable to assume that the supplementary weight loss observed with D-F as compared to a placebo can be primarily attributed to its anorectic effect rather than to its putative thermogenic effect.
Resumo:
Present downslope iron accumulations were investigated in the rainforest zone in southern Cameroon. Six clay and Fe-hydroxide dominated patterns have been identified and occur on the lower part of hill slopes. They can be subdivided in three different sequences, related to gentle, moderate or steep slopes. They are discontinuous with respect to the dismantling zone of the old ferricrete cap formed at Cretaceous period. They show a gradual development from a soft Fe-crust (carapace) to a vesicular facies that will, with time, cover the whole landscape again.
Resumo:
Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.
Resumo:
MOTIVATION: Most bioactive molecules perform their action by interacting with proteins or other macromolecules. However, for a significant fraction of them, the primary target remains unknown. In addition, the majority of bioactive molecules have more than one target, many of which are poorly characterized. Computational predictions of bioactive molecule targets based on similarity with known ligands are powerful to narrow down the number of potential targets and to rationalize side effects of known molecules. RESULTS: Using a reference set of 224 412 molecules active on 1700 human proteins, we show that accurate target prediction can be achieved by combining different measures of chemical similarity based on both chemical structure and molecular shape. Our results indicate that the combined approach is especially efficient when no ligand with the same scaffold or from the same chemical series has yet been discovered. We also observe that different combinations of similarity measures are optimal for different molecular properties, such as the number of heavy atoms. This further highlights the importance of considering different classes of similarity measures between new molecules and known ligands to accurately predict their targets. CONTACT: olivier.michielin@unil.ch or vincent.zoete@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
To assess the effect of weight loss on resting metabolic rate (RMR), the energy expenditure of eight obese prepubertal children (age 9 +/- 1 years; weight 48.7 +/- 9.1 kg; BMI 25.3 +/- 3.9) and of 14 age-matched children of normal body weight (age 9 +/- 1 years; weight 28.8 +/- 5.6 kg; BMI 16.5 +/- 1.7) was measured by indirect calorimetry. The obese children were reinvestigated after a mean weight loss of 5.4 +/- 1.2 kg induced by a six-months mixed hypocaloric diet. Before slimming, the obese group showed a higher daily energy intake than the control group (10.40 +/- 3.45 MJ/day vs 7.97 +/- 2.02 MJ/day respectively; P less than 0.05) but a similar value was observed per unit fat-free mass (FFM) (0.315 +/- 0.032 MJ/kgFFM/day vs 0.329 +/- 0.041 MJ/kgFFM/day respectively). The average RMR of the obese children was greater than that of the control group (5217 +/- 531 kJ/day vs 4477 +/- 506 kJ/day) but similar after adjusting for FFM (4728 +/- 3102 kJ/day vs 4899 +/- 3102 kJ/day). Weight loss resulted in a reduction in RMR (5217 +/- 531 kJ/day vs 4874 +/- 820 kJ/day), each kg of weight loss being accompanied by a decrease of RMR of 64 kJ (15.3 kcal) per day. The changes in RMR induced by weight loss paralleled the changes in FFM. No difference was found in average RQ in obese children vs controls (0.85 +/- 0.03 vs 0.87 +/- 0.03 respectively) and in the obese children before and after weight loss (0.87 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The increase in weight, fat and energy content of queens was studied in Iridomyrmex humilis (Mayr) in relation to the mode of colony founding in ants. The increase in energy content of gynes during the time between emergence and mating reaches only 80% in this species in which queens found colonies with the help of workers (dependent mode), whereas it can reach 470% in species in which queens found colonies without the help of workers (independent mode). These results are discussed with regard to the investment in energy required by each mode of colony founding.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.