217 resultados para Western Canada
Resumo:
The Mont-Mort metapelites are one of the best preserved relies of the Variscan unit in the Brianconnais basement. These micaschists crystallized during a poly-phase metamorphic cycle, under amphibolite facies conditions. Mineral parageneses and geothermobarometric calculations indicate a two-stage evolution. Stage (1) (550-600 degrees C and 5-8 kbar) is documented by assemblages of zoned garnet, staurolite, kyanite(?), biotite, muscovite, quartz and pla gioclase. Stage (2) (550-600 degrees C and 2 kbar) is illustrated by assemblages of andalusite, sillimanite, muscovite, biotite. This metamorphic evolution is characterized by a nearly isothermal decompression path, terminating with the formation of andalusite-bearing veins. U-Pb monazite dates at 330 Ma and Ar-40/Ar-39 muscovite dates at 290-310 Ma (without substantial evidence of argon resetting) point to Variscan metamorphism and yield an estimate of the time interval between the thermal peak and the retrogression stage within this part of the Brianconnais basement. Restoring the Brianconnais and other Alpine basement units within an existing geodynamic model of Cordillera construction and destruction, it is possible to understand better the transition from a medium pressure/high temperature regime (collision with a peak metamorphism around 330 Ma) to low-P/high-T conditions (decompression in an extensional regime) with high geothermal gradient, as recorded by the successive Variscan parageneses within the Mont-Mort metapelites.
Resumo:
BACKGROUND: Many factors affect survival in haemodialysis (HD) patients. Our aim was to study whether quality of clinical care may affect survival in this population, when adjusted for demographic characteristics and co-morbidities. METHODS: We studied survival in 553 patients treated by chronic HD during March 2001 in 21 dialysis facilities in western Switzerland. Indicators of quality of care were established for anaemia control, calcium and phosphate product, serum albumin, pre-dialysis blood pressure (BP), type of vascular access and dialysis adequacy (spKt/V) and their baseline values were related to 3-year survival. The modified Charlson co-morbidity index (including age) and transplantation status were also considered as a predictor of survival. RESULTS: Three-year survival was obtained for 96% of the patients; 39% (211/541) of these patients had died. The 3-year survival was 50, 62 and 69%, respectively, in patients who had 0-2, 3 and >or=4 fulfilled indicators of quality of care (test for linear trend, P < 0.001). In a Cox multivariate analysis model, the absence of transplantation, a higher modified Charlson's score, decreased fulfilment of indicators of good clinical care and low pre-dialysis systolic BP were independent predictors of death. CONCLUSION: Good clinical care improves survival in HD patients, even after adjustment for availability of transplantation and co-morbidities.
Resumo:
Urgonian-type carbonates are a characteristic feature of many late Early Cretaceous shallow-marine, tropical and subtropical environments. The presence of typical photozoan carbonate-producing communities including corals and rudists indicates the prevalence of warm, transparent and presumably oligotrophic conditions in a period otherwise characterized by the high density of globally occurring anoxic episodes. Of particular interest, therefore, is the exploration of relationships between Urgonian platform growth and palaeoceanographic change. In the French and Swiss Jura Mountains, the onset and evolution of the Urgonian platform have been controversially dated, and a correlation with other, better dated, successions is correspondingly difficult. It is for this reason that the stratigraphy and sedimentology of a series of recently exposed sections (Eclepens, Vaumarcus and Neuchatel) and, in addition, the section of the Gorges de l'Areuse were analysed. Calcareous nannofossil biostratigraphy, the evolution of phosphorus contents of bulk rock, a sequence-stratigraphic interpretation and a correlation of drowning unconformities with better dated sections in the Helvetic Alps were used to constrain the age of the Urgonian platform. The sum of the data and field observations suggests the following evolution: during the Hauterivian, important outward and upward growth of a bioclastic and oolitic carbonate platform is documented in two sequences, separated by a phase of platform drowning during the late Early Hauterivian. Following these two phases of platform growth, a second drowning phase occurred during the latest Hauterivian and Early Barremian, which was accompanied by significant platform erosion and sediment reworking. The Late Barremian witnessed the renewed installation of a carbonate platform, which initiated with a phase of oolite production, and which progressively evolved into a typical Urgonian carbonate platform colonized by corals and rudists. This phase terminated at the latest in the middle Early Aptian, due to a further drowning event. The evolution of this particular platform segment is compatible with that of more distal and well-dated segments of the same northern Tethyan platform preserved in the Helvetic zone of the Alps and in the northern subalpine chains (Chartreuse and Vercors).
Hazard mapping for the eastern face of Turtle Mountain, adjacent to the Frank Slide, Alberta, Canada
Resumo:
The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280-290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448 +/- 5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone.
Resumo:
PURPOSE: The current study tested the applicability of Jessor's problem behavior theory (PBT) in national probability samples from Georgia and Switzerland. Comparisons focused on (1) the applicability of the problem behavior syndrome (PBS) in both developmental contexts, and (2) on the applicability of employing a set of theory-driven risk and protective factors in the prediction of problem behaviors. METHODS: School-based questionnaire data were collected from n = 18,239 adolescents in Georgia (n = 9499) and Switzerland (n = 8740) following the same protocol. Participants rated five measures of problem behaviors (alcohol and drug use, problems because of alcohol and drug use, and deviance), three risk factors (future uncertainty, depression, and stress), and three protective factors (family, peer, and school attachment). Final study samples included n = 9043 Georgian youth (mean age = 15.57; 58.8% females) and n = 8348 Swiss youth (mean age = 17.95; 48.5% females). Data analyses were completed using structural equation modeling, path analyses, and post hoc z-tests for comparisons of regression coefficients. RESULTS: Findings indicated that the PBS replicated in both samples, and that theory-driven risk and protective factors accounted for 13% and 10% in Georgian and Swiss samples, respectively in the PBS, net the effects by demographic variables. Follow-up z-tests provided evidence of some differences in the magnitude, but not direction, in five of six individual paths by country. CONCLUSION: PBT and the PBS find empirical support in these Eurasian and Western European samples; thus, Jessor's theory holds value and promise in understanding the etiology of adolescent problem behaviors outside of the United States.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.