129 resultados para Visual Identities
Resumo:
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.
Resumo:
PurposeTo evaluate the impact of traditional French summer vacation on visual acuity and spectral domain-optical coherence tomography (SD-OCT) of Wet AMD patients being treated with intravitreal Ranibizumab.MethodsThis was a consecutive, comparative, single-centre, prospective analysis. All patients who were being treated with intravitreal injection of 0.5 mg ranibizumab at Cergy Pontoise Hospital, Department of Ophthalmology between July 2013 and September 2014 were included. Patients were divided into two groups: (A) patients who skipped one ranibizumab intravitreal injection during holidays, and (B) patients who received injection during their holidays. Evaluations occurred prior to traditional holiday (baseline) and 2 months later, consisting of BCVA using ETDRS, and a complete ophthalmic examination that included slit-lamp biomicroscopy, fundus examination, fluorescein angiography (FA), indocyanine green angiography (ICGA), and spectral domain-optical coherence tomography (SD-OCT). All patients were being treated with PRN anti-VEGF regimen and criteria for reinjection included a visual acuity loss >5 ETDRS letters and/or an increase of central retinal thickness, presence of subretinal fluid, intraretinal fluid, or pigment epithelium detachment. If reinjection criteria were not met, patients were advised to return in 4 weeks.ResultsThe mean visual acuity change was -0.071±0.149 (LogMAR) in group A and +0.003±0.178 in group B (P=0.041). At the second visit (2 months after preholidays visit), 61.8% of patients in group A had SRF and/or intraretinal cysts, and only 27.6% of patients in group B. There was a significant difference in the persistence of fluid between the two groups (P=0.007, χ(2)-test).ConclusionThis cases series demonstrated the detrimental impact of holidays on visual acuity in patients treated with ranibizumab for AMD, which, in spite of their treatment regimen, still leave in vacation. Therefore, it is important to convey the message of treatment adherence to patients, despite their need of holidays.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs' somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants' body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations.
Resumo:
OBJECTIVE: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. METHODS: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. RESULTS: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
Resumo:
Time perception is used in our day-to-day activities. While we understand quite well how our brain processes vision, touch or taste, brain mechanisms subserving time perception remain largely understudied. In this study, we extended an experiment of previous master thesis run by Tatiana Kenel-Pierre. We focused on time perception in the range of milliseconds. Previous studies have demonstrated the involvement of visual areas V1 and V5/MT in the encoding of temporal information of visual stimuli. Based on these previous findings the aim of the present study was to understand if temporal information was encoded in V1 and extrastriate area V5/MT in different spatial frames i.e., head- centered versus eye-centered. To this purpose we asked eleven healthy volunteers to perform a temporal discrimination task of visual stimuli. Stimuli were presented at 4 different spatial positions (i.e., different combinations of retinotopic and spatiotopic position). While participants were engaged in this task we interfered with the activity of the right dorsal V1 and the right V5/MT with transcranial magnetic stimulation (TMS). Our preliminary results showed that TMS over both V1 and V5/MT impaired temporal discrimination of visual stimuli presented at specific spatial coordinates. But whereas TMS over V1 impaired temporal discrimination of stimuli presented in the lower left quadrant, TMS over V5/MT affected temporal discrimination of stimuli presented at the top left quadrant. Although it is always difficult to draw conclusions from preliminary results, we could tentatively say that our data seem to suggest that both V1 and V5/MT encode visual temporal information in specific spatial frames.