182 resultados para Tumor oral
Resumo:
Résumé Le but final de ce projet est d'utiliser des cellules T ou des cellules souches mésenchymateuses modifiées génétiquement afin de surexprimer localement les deux chémokines CXCL13 et CCL2 ensemble ou chacune séparément à l'intérieur d'une tumeur solide. CXCL13 est supposé induire des structures lymphoïdes ectopiques. Un niveau élevé de CCL2 est présumé initier une inflammation aiguë. La combinaison des deux effets amène à un nouveau modèle d'étude des mécanismes régulateur de la tolérance périphérique et de l'immunité tumorale. Les connaissances acquises grâce à ce modèle pourraient permettre le développement ou l'amélioration des thérapies immunes du cancer. Le but premier de ce travail a été l'établissement d'un modèle génétique de la souris permettant d'exprimer spécifiquement dans la tumeur les deux chémokines d'intérêt à des niveaux élevés. Pour accomplir cette tâche, qui est en fait une thérapie génétique de tumeurs solides, deux types de cellules porteuses potentielles ont été évaluées. Des cellules CD8+ T et des cellules mésenchymateuses de la moelle osseuse transférées dans des receveurs portant une tumeur. Si on pouvait répondre aux besoins de la thérapie génétique, indépendamment de la thérapie immune envisagée, on posséderait là un outil précieux pour bien d'autres approches thérapeutiques. Plusieurs lignées de souris transgéniques ont été générées comme source de cellules CD8+ T modifiées afin d'exprimer les chémokines d'intérêt. Dans une approche doublement transgénique les propriétés de deux promoteurs spécifiques de cellules T ont été combinées en utilisant la technologie Cre-loxP. Le promoteur de granzyme B confère une dépendance d'activation et le promoteur distal de lck assure une forte expression constitutive dès que les cellules CD8+ T ont été activées. Les transgènes construits ont montré une bonne performance in vivo et des souris qui expriment CCL2 dans des cellules CD8+ T activées ont été obtenues. Ces cellules peuvent maintenant être utilisées avec différents protocoles pour transférer des cellules T cytotoxiques (CTL) dans des receveurs porteur d'une tumeur, permettant ainsi d'évaluer leur capacité en tant que porteuse de chémokine d'infiltrer la tumeur. L'établissement de souris transgéniques, qui expriment pareillement CXCL13 est prévu dans un avenir proche. L'évaluation de cellules mésenchymateuses de la moelle osseuse a démontré que ces cellules se greffent efficacement dans le stroma tumoral suite à la co-injection avec des cellules tumorales. Cela représente un outil précieux pour la recherche, vu qu'il permet d'introduire des cellules manipulées dans un modèle tumoral. Les résultats confirment partiellement d'autres résultats rapportés dans un modèle amélioré. Cependant, l'efficacité et la spécificité suggérées de la migration systémique de cellules mésenchymateuses de la moelle osseuse dans une tumeur n'ont pas été observées dans notre modèle, ce qui indique, que ces cellules ne se prêtent pas à une utilisation thérapeutique. Un autre résultat majeur de ce travail est l'établissement de cultures de cellules mésenchymateuses de la moelle osseuse in vitro conditionnées par des tumeurs, ce qui a permis à ces cellules de s'étendre plus rapidement en gardant leur capacité de migration et de greffe. Cela offre un autre outil précieux, vu que la culture in vitro est un pas nécessaire pour une manipulation thérapeutique. Abstract The ultimate aim of the presented project is to use genetically modified T cells or mesenchymal stem cells to locally overexpress the two chemokines CXCL13 and CCL2 together or each one alone inside a solid tumor. CXCL13 is supposed to induce ectopic lymphoid structures and a high level of CCL2 is intended to trigger acute inflamation. The combination of these two effects represents a new model for studying mechanisms that regulate peripheral tolerance and tumor immunity. Gained insights may help developing or improving immunotherapy of cancer. The primary goal of the executed work was the establishment of a genetic mouse model that allows tumor-specific expression of high levels of the two chemokines of interest. For accomplishing this task, which represents gene therapy of solid tumors, two types of potentially useful carrier cells were evaluated. CD8+ T cells and mesenchymal bone marrow cells to be used in adoptive cell transfers into tumor-bearing mice. Irrespectively of the envisaged immunotherapy, satisfaction of so far unmet needs of gene therapy would be a highly valuable tool that may be employed by many other therapeutic approaches, too. Several transgenic mouse lines were generated as a source of CD8+ T cells modified to express the chemokines of interest. In a double transgenic approach the properties of two T cell-specific promoters were combined using Cre-loxP technology. The granzyme B promoter confers activation-dependency and the lck distal promoter assures strong constitutive expression once the CD8+ T cell has been activated. The constructed transgenes showed a good performance in vivo and mice expressing CCL2 in activated CD8+ T cells were obtained. These cells can now be used with different protocols for adoptively transferring cytotoxic T cells (CTL) into tumor-bearing recipients, thus allowing to study their capacity as tumor-infiltrating chemokine carrier. The establishment of transgenic mice likewisely expressing CXCL13 is expected in the near future. In addition, T cells from generated single transgenic mice that have high expression of an EGFP reporter in both CD4+ and CD8+ cells can be easily traced in vivo when setting up adoptive transfer conditions. The evaluation of mesenchymal bone marrow cells demonstrated that these cells can efficiently engraft into tumor stroma upon local coinjection with tumor cells. This represents a valuable tool for research purposes as it allows to introduce manipulated stromal cells into a tumor model. Therefore, the established engraftment model is suited for studying the envisaged immunotherapy. These results confirm to some extend previously reported results in an improved model, however, the suggested systemic tumor homing efficiency and specificity of mesenchymal bone marrow cells was not observed in our model indicating that these cells may not be suited for therapeutic use. Another major result of the presented work is the establishment oftumor-conditioned in vitro culture of mesenchymal bone marrow cells, which allowed to more rapidly expand these cells while maintaining their tumor homing and engrafting capacities. This offers another valuable tool as in vitro culture is a necessary step for therapeutic manipulations.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which can induce mammary carcinomas in mice late in life by activation of proto-oncogenes after integration in their vicinity. Surprisingly, it requires a functional immune system to achieve efficient infection of the mammary gland. This requirement became clear when it was discovered that it has developed strategies to exploit the immune response. Instead of escaping immune detection, it induces a vigorous polyclonal T-B interaction which is required to induce a chronic infection. This is achieved by activating and then infecting antigen presenting cells (B cells), expressing a superantigen on their cell surface and triggering unlimited help by the large number of superantigen-specific T cells. The end result of this strong T-B interaction is the proliferation and differentiation of the infected B cells leading to their long term survival.
Oral cancer treatments and adherence: medication event monitoring system assessment for capecitabine
Resumo:
Background: Oncological treatments are traditionally administered via intravenous injection by qualified personnel. Oral formulas which are developing rapidly are preferred by patients and facilitate administration however they may increase non-adherence. In this study 4 common oral chemotherapeutics are given to 50 patients, who are still in the process of inclusion, divided into 4 groups. The aim is to evaluate adherence and offer these patients interdisciplinary support with the joint help of doctors and pharmacists. We present here the results for capecitabine. Materials and Methods: The final goal is to evaluate adhesion in 50 patients split into 4 groups according to oral treatments (letrozole/exemestane, imatinib/sunitinib, capecitabine and temozolomide) using persistence and quality of execution as parameters. These parameters are evaluated using a medication event monitoring system (MEMS®) in addition to routine oncological visits and semi-structured interviews. Patients were monitored for the entire duration of treatment up to a maximum of 1 year. Patient satisfaction was assessed at the end of the monitoring period using a standardized questionary. Results: Capecitabine group included 2 women and 8 men with a median age of 55 years (range: 36−77 years) monitored for an average duration of 100 days (range: 5-210 days). Persistence was 98% and quality of execution 95%. 5 patients underwent cyclic treatment (2 out of 3 weeks) and 5 patients continuous treatment. Toxicities higher than grade 1 were grade 2−3 hand-foot syndrome in 1 patient and grade 3 acute coronary syndrome in 1 patient both without impact on adherence. Patients were satisfied with the interviews undergone during the study (57% useful, 28% very useful, 15% useless) and successfully integrated the MEMS® in their daily lives (57% very easily, 43% easily) according to the results obtained by questionary at the end of the monitoring period. Conclusion: Persistence and quality of execution observed in our Capecitabine group of patients were excellent and better than expected compared to previously published studies. The interdisciplinary approach allowed us to better identify and help patients with toxicities to maintain adherence. Overall patients were satisfied with the global interdisciplinary follow-up. With longer follow up better evaluation of our method and its impact will be possible. Interpretation of the results of patients in the other groups of this ongoing trial will provide us information for a more detailed analysis.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.
Resumo:
Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.
Resumo:
We recently reported that nuclear grading in prostate cancer is subject to a strong confirmation bias induced by the tumor architecture. We now wondered whether a similar bias governs nuclear grading in breast carcinoma. An unannounced test was performed at a pathology conference. Pathologists were asked to grade nuclei in a PowerPoint presentation. Circular high power fields of 27 invasive ductal carcinomas were shown, superimposed over low power background images of either tubule-rich or tubule-poor carcinomas. We found (a) that diagnostic reproducibility of nuclear grades was poor to moderate (weighed kappa values between 0.07 and 0.54, 27 cases, 44 graders), but (b) that nuclear grades were not affected by the tumor architecture. We speculate that the categorized grading in breast cancer, separating tubule formation, nuclear pleomorphism, and mitotic figure counts in a combined three tier score, prevents the bias that architecture exerts on nuclear grades in less well-controlled situations.
Resumo:
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Resumo:
Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectin-like receptor NKG2D. To redirect NK cells against tumor cells, we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the 'knob into hole' heterodimerization strategy, in which 'knob' and 'hole' variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site.
Resumo:
PURPOSE: To analyze final long-term survival and clinical outcomes from the randomized phase III study of sunitinib in gastrointestinal stromal tumor patients after imatinib failure; to assess correlative angiogenesis biomarkers with patient outcomes. EXPERIMENTAL DESIGN: Blinded sunitinib or placebo was given daily on a 4-week-on/2-week-off treatment schedule. Placebo-assigned patients could cross over to sunitinib at disease progression/study unblinding. Overall survival (OS) was analyzed using conventional statistical methods and the rank-preserving structural failure time (RPSFT) method to explore cross-over impact. Circulating levels of angiogenesis biomarkers were analyzed. RESULTS: In total, 243 patients were randomized to receive sunitinib and 118 to placebo, 103 of whom crossed over to open-label sunitinib. Conventional statistical analysis showed that OS converged in the sunitinib and placebo arms (median 72.7 vs. 64.9 weeks; HR, 0.876; P = 0.306) as expected, given the cross-over design. RPSFT analysis estimated median OS for placebo of 39.0 weeks (HR, 0.505, 95% CI, 0.262-1.134; P = 0.306). No new safety concerns emerged with extended sunitinib treatment. No consistent associations were found between the pharmacodynamics of angiogenesis-related plasma proteins during sunitinib treatment and clinical outcome. CONCLUSIONS: The cross-over design provided evidence of sunitinib clinical benefit based on prolonged time to tumor progression during the double-blind phase of this trial. As expected, following cross-over, there was no statistical difference in OS. RPSFT analysis modeled the absence of cross-over, estimating a substantial sunitinib OS benefit relative to placebo. Long-term sunitinib treatment was tolerated without new adverse events.
Resumo:
Superantigens (SAg) encoded by endogenous mouse mammary tumor viruses (Mtv) interact with the V beta domain of the T cell receptor (TcR-V beta). Presentation of Mtv SAg can lead to stimulation and/or deletion of the reactive T cells, but little is known about the quantitative aspects of SAg presentation. Although monoclonal antibodies have been raised against Mtv SAg, they have not been useful in quantitating SAg protein, which is present in very low amounts in normal cells. Alternative attempts to quantitate Mtv SAg mRNA expression are complicated by the fact that Mtv transcription occurs from multiple loci and in different overlapping reading frames. In this report we describe a novel competitive polymerase chain reaction assay which allows the locus-specific quantitation of SAg expression at the mRNA level in lymphocyte subsets from mouse strains with multiple endogenous Mtv loci. In B cells as well as T cells (CD4+ or CD8+), Mtv-6 SAg is expressed at the highest levels, followed by Mtv-7 SAg and (to a much lesser extent) Mtv-8,9. Consistent with functional Mtv-7 SAg presentation studies, we find that Mtv-7 SAg expression is higher in B cells than in CD8+ T cells and very low in the CD4+ subset. The overall hierarchy in Mtv SAg expression (i.e. Mtv-6 > Mtv-7 > Mtv 8,9) was also observed for mRNA isolated from neonatal thymus. Furthermore, the kinetics of intrathymic deletion of the corresponding TcR-V beta domains during ontogeny correlated with the levels of Mtv SAg expression. Collectively our data suggest that T cell responses to Mtv SAg are largely controlled by SAg expression levels on presenting cells.
Resumo:
Despite the high prevalence of colon cancer in the world and the great interest in targeted anti-cancer therapy, only few tumor-specific gene products have been identified that could serve as targets for the immunological treatment of colorectal cancers. The aim of our study was therefore to identify frequently expressed colon cancer-specific antigens. We performed a large-scale analysis of genes expressed in normal colon and colon cancer tissues isolated from colorectal cancer patients using massively parallel signal sequencing (MPSS). Candidates were additionally subjected to experimental evaluation by semi-quantitative RT-PCR on a cohort of colorectal cancer patients. From a pool of more than 6000 genes identified unambiguously in the analysis, we found 2124 genes that were selectively expressed in colon cancer tissue and 147 genes that were differentially expressed to a significant degree between normal and cancer cells. Differential expression of many genes was confirmed by RT-PCR on a cohort of patients. Despite the fact that deregulated genes were involved in many different cellular pathways, we found that genes expressed in the extracellular space were significantly over-represented in colorectal cancer. Strikingly, we identified a transcript from a chromosome X-linked member of the human endogenous retrovirus (HERV) H family that was frequently and selectively expressed in colon cancer but not in normal tissues. Our data suggest that this sequence should be considered as a target of immunological interventions against colorectal cancer.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
Frequent expression of cancer testis antigens (CTA) has been consistently observed in head and neck squamous cell carcinomas (HNSCC). For instance, in 52 HNSCC patients, MAGE-A3 and -A4 CTA were expressed in over 75% of tumors, regardless of the sites of primary tumors such as oral cavity or hypopharynx. Yet, T-cell responses against these CTA in tumor-bearing patients have not been investigated in detail. In this study, we assessed the naturally acquired T-cell response against MAGE-A3 and -A4 in nonvaccinated HNSCC patients. Autologous antigen-presenting cells pulsed with overlapping peptide pools were used to detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from healthy donors and seven head and neck cancer patients. CD4(+) T-cell clones were characterized by cytokine secretion. We could detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from 7/7 cancer patients analyzed. Moreover, we identified six previously described and three new epitopes for MAGE-A3. Among them, the MAGE-A3(111-125) and MAGE-A3(161-175) epitopes were shown to be naturally processed and presented by DC in association with HLA-DP and DR, respectively. All of the detected MAGE-A4 responses were specific for new helper epitopes. These data suggest that naturally acquired CD4(+) T-cell responses against CT antigens often occur in vivo in HNSCC cancer patients and provide a rationale for the development of active immunotherapeutic approaches in this type of tumor.
Resumo:
BACKGROUND: Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT. RESULTS: Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. CONCLUSIONS: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.