134 resultados para Systemic inflammatory response syndrome
Resumo:
Introduction: Absorbable anchors are frequently used in shoulder surgery. Mechanisms of absorption induce a local inflammatory reaction. It is not clear if this process may disturb healing of the capsule and ligaments. The purpose of the study was to compare the rate of recurrent dislocation following open shoulder stabilization when using absorbable or non-absorbable suture anchors. Methods: Between 1999 and 2003, 83 open Bankart repairs were performed by the same surgeon. All patients had recurrent traumatic anterior shoulder instability. All had preoperative arthro-MRI or arthro-CT which did not reveal any significant bony Bankart lesion or rotatorcuff tear. Thirty-four patients were treated with absorbable anchors (Panalok®) and sutures (Panacryl®) and 49 with non-absorbable anchors (Mitek GII®) and sutures (Ethibond®). The same surgical technique and rehabilitation protocol were used. The incidence of sports ability and recurrent instability were recorded. We defined instability as true dislocation. Results: Five patients on 34 were lost to follow-up in the absorbable group and 7 on 49 in the non-absorbable group. The mean age of absorbable group was 25 years (range, 17-39 years). At a mean follow-up of 66 months (range, 54-76 months), 86% could resume sports activity. Five patients on 29 (17%) reported recurrent instability and two did need revision surgery. The mean age in non-absorbable group was 28 year (range, 18-47 years). At a mean follow-up of 78 months (range, 49-82 months), 93% could resume sports activity. Three patients on 42 (7%) reported recurrent instability and one did need revision surgery. Conclusion: This clinical study showed a clear tendency to a higher recurrence rate of dislocation when using absorbable suture anchors (17% in absorbable vs 7% in non-absorbable group). It is known that Panacryl® may be responsible for a major local inflammatory response. However, it is still unclear if this could be the failure etiology. Consequently, we prefer to use systematically non-absorbable sutureanchors for shoulder stabilization.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
Enteral nutrition (EN) via tube feeding is, today, the preferred way of feeding the critically ill patient and an important means of counteracting for the catabolic state induced by severe diseases. These guidelines are intended to give evidence-based recommendations for the use of EN in patients who have a complicated course during their ICU stay, focusing particularly on those who develop a severe inflammatory response, i.e. patients who have failure of at least one organ during their ICU stay. These guidelines were developed by an interdisciplinary expert group in accordance with officially accepted standards and are based on all relevant publications since 1985. They were discussed and accepted in a consensus conference. EN should be given to all ICU patients who are not expected to be taking a full oral diet within three days. It should have begun during the first 24h using a standard high-protein formula. During the acute and initial phases of critical illness an exogenous energy supply in excess of 20-25 kcal/kg BW/day should be avoided, whereas, during recovery, the aim should be to provide values of 25-30 total kcal/kg BW/day. Supplementary parenteral nutrition remains a reserve tool and should be given only to those patients who do not reach their target nutrient intake on EN alone. There is no general indication for immune-modulating formulae in patients with severe illness or sepsis and an APACHE II Score >15. Glutamine should be supplemented in patients suffering from burns or trauma.
Resumo:
Introduction : Doublecortin (DCX) is a microtubule associated protein expressed by migrating neural precursors. DCX is also expressed in approximately 4% of all cortical cells in adult normal primate brain. DCX expression is also enhanced locally in response to an acute insult made to the brain. This is thought to play a role in plasticity or neural repair. That being said, it would be interesting to know how the expression of DCX is modified in a more chronic insult, like in neurodegeneration such as in Parkinson's Disease (PD) and Alzheimer's Disease (AD). The aim of my study is to study the expression of DCX cells in the cortex of patients having a neurodegenerative disease, compared to control patients. Method: DCX cells quantification on 9 DCX‐stained 5 μm thick formalin fixed paraffin embedded brain sections: 3 Alzheimer's disease patients, 3 Parkinson's disease patients and 3 control patients. Each patient had several sections that we could stain with different stainings (GALLYA, TAU, DCX). By using a computerized image analysis system (Explora Nova, La Rochelle, France), cortical columns were selected on areas on the cortex with a lot of degeneration subjectively observed on GALLYA stained sections and on TAU stained sections. Then total number of cells was counted on TAU sections, where all nuclei were colored in blue. Then the DCX cells were counted on the corresponding DCX sections. These values were standardized to a reference surface area. The ratio of DCX cells over total cells was then calculated. Results : There is a difference of DCX cell expression between Alzheimer's Disease patients and control patients. The percentage of dcx cells in the cortex of an Alzheimer's patient is around 12.54% ± 2.17%, where as in the cortex of control patients, it is around 5.47% ± 0.83%. On the other hand, there is no significant difference in the ratio of DCX cells over total cells between parkinson's patients and control patients, both having around 5% of DCX cells. Discussion: There is a dramatic increase of DCX expression in AD (12.5%) compared to PD and controls (5.5%). The increase in DCX ratio in AD may have two potential causes: 1.The increased ratio is due to DCX cells being more resistant to degeneration compared to surrounding cells which are degenerating due to AD, leading to the cortical atrophy observed in AD patients. So the decrease of total cells without any change in the number of DCX cells makes the ratio bigger in AD compared to the controls. 2.The increased ratio is due to an actual increase in DCX cells. This means that there is some neural repair to compensate the degenerative process, just like the repair process observed in acute lesions to the brain. This second idea can be integrated in the broader point of view of neuroinflammation. The progression of the disease would trigger neuroinflammation and the process following the primary inflammatory response which is neural repair. So our study can show that the increase in DCX cells is an attempt to repair the degenerated neurons, in the context of neuroinflammation triggered by the physiopathological progression of the disease.
Resumo:
Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.
Resumo:
The subretinal transplantation of retinal pigment epithelial cells (RPE cells) grown on polymeric supports may have interest in retinal diseases affecting RPE cells. In this study, montmorillonite based polyurethane nanocomposite (PU-NC) was investigated as substrate for human RPE cell growth (ARPE-19 cells). The ARPE-19 cells were seeded on the PU-NC, and cell viability, proliferation and differentiation were investigated. The results indicated that ARPE-19 cells attached, proliferated onto the PU-NC, and expressed occludin. The in vivo ocular biocompatibility of the PU-NC was assessed by using the HET-CAM; and through its implantation under the retina. The direct application of the nanocomposite onto the CAM did not compromise the vascular tissue in the CAM surface, suggesting no ocular irritancy of the PU-NC film. The nanocomposite did not elicit any inflammatory response when implanted into the eye of rats. The PU-NC may have potential application as a substrate for RPE cell transplantation.
Resumo:
Approximately 0.2 % of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1 % zinc, >0.1 % nickel or >0.01 % cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation.
Resumo:
Given the multiplicity of nanoparticles (NPs), there is a requirement to develop screening strategies to evaluate their toxicity. Within the EU-funded FP7 NanoTEST project, a panel of medically relevant NPs has been used to develop alternative testing strategies of NPs used in medical diagnostics. As conventional toxicity tests cannot necessarily be directly applied to NPs in the same manner as for soluble chemicals and drugs, we determined the extent of interference of NPs with each assay process and components. In this study, we fully characterized the panel of NP suspensions used in this project (poly(lactic-co-glycolic acid)-polyethylene oxide [PLGA-PEO], TiO2, SiO2, and uncoated and oleic-acid coated Fe3O4) and showed that many NP characteristics (composition, size, coatings, and agglomeration) interfere with a range of in vitro cytotoxicity assays (WST-1, MTT, lactate dehydrogenase, neutral red, propidium iodide, (3)H-thymidine incorporation, and cell counting), pro-inflammatory response evaluation (ELISA for GM-CSF, IL-6, and IL-8), and oxidative stress detection (monoBromoBimane, dichlorofluorescein, and NO assays). Interferences were assay specific as well as NP specific. We propose how to integrate and avoid interference with testing systems as a first step of a screening strategy for biomedical NPs.
Resumo:
Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.
Resumo:
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ubiquitously expressed gene with higher levels observed in skeletal muscle. Recently, our laboratory showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that PPARβ/δ modulates myostatin activity to induce myogenesis in skeletal muscle. In the present study, we show that PPARβ/δ-null mice display reduced body weight, skeletal muscle weight, and myofiber atrophy during postnatal development. In addition, a significant reduction in satellite cell number was observed in PPARβ/δ-null mice, suggesting a role for PPARβ/δ in muscle regeneration. To investigate this, tibialis anterior muscles were injured with notexin, and muscle regeneration was monitored on days 3, 5, 7, and 28 postinjury. Immunohistochemical analysis revealed an increased inflammatory response and reduced myoblast proliferation in regenerating muscle from PPARβ/δ-null mice. Histological analysis confirmed that the regenerated muscle fibers of PPARβ/δ-null mice maintained an atrophy phenotype with reduced numbers of centrally placed nuclei. Even though satellite cell numbers were reduced before injury, satellite cell self-renewal was found to be unaffected in PPARβ/δ-null mice after regeneration. Previously, our laboratory had showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that inactivation of PPARβ/δ increases myostatin signaling and inhibits myogenesis. Our results here indeed confirm that inactivation of myostatin signaling rescues the atrophy phenotype and improves muscle fiber cross-sectional area in both uninjured and regenerated tibialis anterior muscle from PPARβ/δ-null mice. Taken together, these data suggest that absence of PPARβ/δ leads to loss of satellite cells, impaired skeletal muscle regeneration, and postnatal myogenesis. Furthermore, our results also demonstrate that functional antagonism of myostatin has utility in rescuing these effects.
Resumo:
BACKGROUND: To study the 'metabolic profile' of different surgical procedures and correlate it with pertinent surgical details and postoperative complications. METHODS: We conducted a prospective pilot study of 70 patients, ten for each of the seven following groups: (1) laparoscopic cholecystectomy, (2) incisional hernia repair, (3) laparoscopic and (4) open colon surgery, (5) upper gastrointestinal, (6) hepatic, and (7) pancreatic resections. Biochemical assessment included white blood cell count (WBC), C-reactive protein (CRP), glucose, triglycerides (TG), albumin (Alb), and pre-albumin (Pre-Alb), from the day before surgery until 5 days thereafter. Biological markers were compared for major versus minor surgery groups, which were defined on a clinical basis. Univariable analysis was used to identify risk factors for postoperative complications and p < 0.05 was the significance threshold. RESULTS: Common findings in all surgery groups were the acute inflammatory response (↑: WBC, CRP, ↓: TG, Alb, pre-Alb). Using cut-off values of 240 min operative (OR) time and 300 ml estimated blood loss (EBL), laparoscopic cholecystectomy, incisional hernia repair, and laparoscopic colectomy could be distinguished from open colectomy, upper gastrointestinal, liver, and pancreas resections. In a biochemical level, increased CRP and reduced postoperative Alb levels were highly discriminative of all types of 'major surgery.' Significant risk factors for postoperative complications were age, male gender, malignancy, longer OR time, higher blood loss, high CRP, and low Alb levels. CONCLUSIONS: Biochemically, CRP and Alb levels can help quantify the magnitude of the surgical trauma, which is correlated with adverse outcomes.
Resumo:
UNLABELLED: Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.
Resumo:
Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation.
Resumo:
Les mécanismes qui régulent le processus de guérison de la peau lésée ne sont pas entièrement compris. Nous avons précédemment montré que les cellules dendritiques plasmocytoïdes (pDCs) sont normalement absentes de la peau saine mais infiltrent rapidement la peau humaine ainsi que celle des souris après une blessure cutanée. Après avoir infiltré la peau, ces pDCs sont capables de détecter les acides nucléiques par l'expression des récepteurs de type Toll 7 et 9 ce qui les active à produire de 1' interféron (IFN) de type I. Ce processus est primordial pour la re- épithélisation des blessures cutanées. Cependant, les mécanismes conduisant à l'infiltration et à 1'activation des pDCs restent inconnus. Dans notre projet, nous montrons que la chimiokine CxcllO est responsable de l'infiltration des pDCs. De façon importante, nous démontrons que les neutrophiles qui infiltrent également la peau lésée sont la source majeure de cette chimiokine. La déplétion des neutrophiles abolit d'ailleurs le recrutement des pDCs confirmant ainsi que CxcllO produit par les neutrophiles est responsable de l'infiltration des pDCs dans la peau endommagée. De façon intéressante, nous avons trouvé que CxcllO en plus de son activité chimiotactique, est capable de former des complexes avec l'ADN et d'activer ainsi les pDCs à produire de l'IFN de type I. De plus, nous avons observé que les neutrophiles qui infiltrent la peau forment des Neutrophil Extracellular Traps (NETs). Ces NETs sont constitués de filaments extracellulaires d'ADN recouverts par de nombreuses protéines principalement d'origine granulaire. D'une manière frappante, le blocage de la NETose ou l'utilisation de souris déficientes pour la formation de NETs altère le recrutement et l'activation des pDCs ainsi que la réponse inflammatoire qui en découle ainsi que le processus de re-epithélisation qui s'ensuit. En prenant en compte toutes ces données, nos résultats démontrent que suite à une blessure de la peau, les neutrophiles par la production de CxcllO contrôlent l'infiltration des pDCs dans la peau lésée et par la formation de NETs, promeuvent l'activation des pDCs. Notre étude fournit donc de nouvelles informations sur les mécanismes de guérison de la peau et ouvre de nouvelles perspectives thérapeutiques quant à la réparation tissulaire de la peau soit dans le but de l'amplifier ou de l'inhiber. -- The mechanisms that regulate healing of the injured skin are not well understood. We have previously shown that plasmacytoid dendritic cells (pDCs) are normally absent from the healthy skin, but rapidly infiltrate both murine and human skin upon injury. Upon skin infiltration, pDCs sense nucleic acids via TLR7/TLR9 and are activated to produce type I interferon (IFN), a process that is crucial for re-epithelialisation of skin wounds. However, the mechanisms that drive pDCs recruitment and activation in injured skin remain unclear. We show that CxcllO is responsible for pDCs infiltration. Importantly, we demonstrate that skin infiltrating neutrophils are the major source of this chemokine. Neutrophils depletion completely abrogated pDCs recruitment confirming that CxcllO- driven pDCs recruitment is controlled by neutrophils. Interestingly, CxcllO was also found to form complexes with DNA and to activate pDCs to produce Type I IFN in addition to its chemotactic activity. Moreover, we observed that infiltrating neutrophils release Neutrophils Extracellular Traps (NETs) composed of DNA filaments decorated with neutrophils-derived proteins. Strikingly, blocking NETosis or using mice deficient for NETs production impaired pDCs recruitment and activation as well as the subsequent inflammatory response and the re-epithelialisation process. Altogether, these data demonstrate that upon skin injury, neutrophils control pDCs infiltration into the injured skin by the release of CxcllO and via the production of NETs, they allow complex formation between CxcllO and NET-DNA leading to pDCs activation. Our findings provide new insights into the mechanisms of wound healing and open new avenues for potential therapeutic interventions to boost or inhibit wound repair in the skin.