254 resultados para Sleep Onset Latency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-three adolescents with psychotic disorders, aged from 13 to 18 years, participated in a 12-week open label trial (17 adolescents completed the study) in order to examine the impact of quetiapine on clinical status and cognitive functions (encompassing processing speed, attention, short-term memory, long-term memory and executive function). An improvement in Clinical Global Impression and Positive and Negative Symptom Scale (P's ≤ 0.001) was observed. In addition, after controlling for amelioration of symptoms, a significant improvement was observed on one executive function (P = 0.044; Trail Making Part B). The remaining cognitive abilities showed stability. In addition, we observed an interaction between quetiapine doses (>300 mg/day or <300 mg/day) and time, where lower doses showed more improvement in verbal short-term memory (P = 0.048), inhibition abilities (P = 0.038) and positive symptoms (P = 0.020). The neuropsychological functioning of adolescents with psychotic disorders remained mainly stable after 12 weeks of treatment with quetiapine. However, lower doses seemed to have a better impact on two components of cognition (inhibition abilities and verbal short-term memory) and on positive symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Santos, G. Gold, E. Kövari, F. R. Herrmann, P. R. Hof, C. Bouras and P. Giannakopoulos (2010) Neuropathology and Applied Neurobiology36, 661-672
Neuropathological analysis of lacunes and microvascular lesions in late-onset depression Aims: Previous neuropathological studies documented that small vascular and microvascular pathology is associated with cognitive decline. More recently, we showed that thalamic and basal ganglia lacunes are associated with post-stroke depression and may affect emotional regulation. The present study examines whether this is also the case for late-onset depression. Methods: We performed a detailed analysis of small macrovascular and microvascular pathology in the post mortem brains of 38 patients with late-onset major depression (LOD) and 29 healthy elderly controls. A clinical diagnosis of LOD was established while the subjects were alive using the DSM-IV criteria. Additionally, we retrospectively reviewed all charts for the presence of clinical criteria of vascular depression. Neuropathological evaluation included bilateral semi-quantitative assessment of lacunes, deep white matter and periventricular demyelination, cortical microinfarcts and both focal and diffuse gliosis. The association between vascular burden and LOD was investigated using Fisher's exact test and univariate and multivariate logistic regression models. Results: Neither the existence of lacunes nor the presence of microvascular ischaemic lesions was related to occurrence of LOD. Similarly, there was no relationship between vascular lesion scores and LOD. This was also the case within the subgroup of LOD patients fulfilling the clinical criteria for vascular depression. Conclusions: Our results challenge the vascular depression hypothesis by showing that neither deep white matter nor periventricular demyelination is associated with LOD. In conjunction with our previous observations in stroke patients, they also imply that the impact of lacunes on mood may be significant solely in the presence of acute brain compromise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many case reports of serious complications and death among obstructive sleep apnea patients (OSA) during general anesthesia or postoperative analgesia. Sedatives and anesthetic agents, pharyngeal anatomy of these patients, opiates given for analgesia, and post operative REM sleep rebound represent potential hazards for general anesthesia in OSA patients. Ideally these patients should be treated with continuous positive airway pressure (CPAP) during premedication, directly after extubation and during postoperative analgesia. Unfortunately, only about 20% of these patients are diagnosed before surgery. A special attention should be given to the symptoms and signs suggestive of OSA during preoperative visits. Screening tests should be performed in patients with suspected OSA and, if positive, a treatment should be initiated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that a function of sleep is to replenish brain glycogen stores that become depleted while awake. We have previously tested this hypothesis in three inbred strains of mice by measuring brain glycogen after a 6h sleep deprivation (SD). Unexpectedly, glycogen content in the cerebral cortex did not decrease with SD in two of the strains and was even found to increase in mice of the C57BL/6J (B6) strain. Manipulations that initially induce glycogenolysis can also induce subsequent glycogen synthesis thereby elevating glycogen content beyond baseline. It is thus possible that in B6 mice, cortical glycogen content decreased early during SD and became elevated later in SD. In the present study, we therefore measured changes in brain glycogen over the course of a 6 h SD and during recovery sleep in B6 mice. We found no evidence of a decrease at any time during the SD, instead, cortical glycogen content monotonically increased with time-spent-awake and, when sleep was allowed, started to revert to control levels. Such a time-course is opposite to the one predicted by our initial hypothesis. These results demonstrate that glycogen synthesis can be achieved during prolonged wakefulness to the extent that it outweighs glycogenolysis. Maintaining this energy store seems thus not to be functionally related to sleep in this strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations. METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation). INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of genes, environment and gene-environment interactions to sleep disorders is increasingly recognized. Well-documented familial and twin sleep disorder studies suggest an important influence of genetic factors. However, only few sleep disorders have an established genetic basis including four rare diseases that may result from a single gene mutation: fatal familial insomnia, familial advanced sleep-phase syndrome, chronic primary insomnia, and narcolepsy with cataplexy. However, most sleep disorders are complex in terms of their genetic susceptibility together with the variable expressivity of the phenotype even within a same family. Recent linkage, genome-wide and candidate gene association studies resulted in the identification of gene mutations, gene localizations, or evidence for susceptibility genes and/or loci in several sleep disorders. Molecular techniques including mainly genome-wide linkage and association studies are further required to identify the contribution of new genes. These identified susceptibility genetic determinants will provide clues to better understand pathogenesis of sleep disorders, to assess the risk for diseases and also to find new drug targets to treat and to prevent the underlying conditions. We reviewed here the role of genetic basis in most of key sleep disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.

Relevância:

20.00% 20.00%

Publicador: