167 resultados para Sedimentation dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, braided river research has considered flow, sediment transport processes and, recently, vegetation dynamics in relation to river morphodynamics. However, if considering the development of woody vegetated patches over a time scale of decades, we must consider the extent to which soil forming processes, particularly related to soil organic matter, impact the alluvial geomorphic-vegetation system. Here we quantify the soil organic matter processing (humification) that occurs on young alluvial landforms. We sampled different geomorphic units, ranging from the active river channel to established river terraces in a braided river system. For each geomorphic unit, soil pits were used to sample sediment/soil layers that were analysed in terms of grain size (<2mm) and organic matter quantity and quality (RockEval method). A principal components analysis was used to identify patterns in the dataset. Results suggest that during the succession from bare river gravels to a terrace soil, there is a transition from small amounts of external organic matter supply provided by sedimentation processes (e.g. organic matter transported in suspension and deposited on bars), to large amounts of autogenic in situ organic matter production due to plant colonisation. This appears to change the time scale and pathways of alluvial succession (bio-geomorphic succession). However, this process is complicated by: the ongoing possibility of local sedimentation, which can serve to isolate surface layers via aggradation from the exogenic supply; and erosion which tends to create fresh deposits upon which organic matter processing must re-start. The result is a complex pattern of organic matter states as well as a general lack of any clear chronosequence within the active river corridor. This state reflects the continual battle between deposition events that can isolate organic matter from the surface, erosion events that can destroy accumulating organic matter and the early ecosystem processes necessary to assist the co-evolution of soil and vegetation. A key question emerges over the extent to which the fresh organic matter deposited in the active zone is capable of significantly transforming the local geochemical environment sufficiently to accelerate soil development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) `oxidation zone' characterized by low-pH (2.5-4), a `neutralization zone' (70-80 to 300-400 cm) and an unaltered `primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological information provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the dynamic properties of the horizontal vestibulo-ocular reflex (h-VOR) in the acute stage of two common labyrinthine diseases that provoke severe attacks of vertigo with spontaneous nystagmus: vestibular neuritis (vestibular loss alone) and viral labyrinthitis (cochleovestibular loss). MATERIAL AND METHODS: Sixty-three patients were investigated: 42 were diagnosed with vestibular neuritis and 21 with viral labyrinthitis. The h-VOR function was evaluated by conventional caloric and impulsive testing. A simplified model of vestibular function was used to analyze the vestibulo-ocular response to rotational stimulation. RESULTS: The results showed a significant difference in h-VOR characteristics between the two pathologies. Patients with vestibular neuritis exhibited a strong horizontal semicircular canal deficit, but no h-VOR asymmetry between the two rotational directions. In contrast, patients with viral labyrinthitis demonstrated moderate canal paresis and a marked h-VOR deficit in rotation toward the affected ear. CONCLUSION: These findings support the hypothesis that the h-VOR dynamic asymmetry that occurs after an acute unilateral inner ear lesion is not due to canal dysfunction alone, but involves complex adaptive changes in the central VOR that may implicate the otolith system. Based on histopathologic and clinical differences in the two pathologies reported in the literature, we postulate that this otolith-canal interaction is mainly linked to the loss of saccular function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the general question of the extent to which the hydrodynamic behaviour of microscopic freely fluctuating objects can be reproduced by macrosopic rigid objects. In particular, we compare the sedimentation speeds of knotted DNA molecules undergoing gel electrophoresis to the sedimentation speeds of rigid stereolithographic models of ideal knots in both water and silicon oil. We find that the sedimentation speeds grow roughly linearly with the average crossing number of the ideal knot configurations, and that the correlation is stronger within classes of knots. This is consistent with previous observations with DNA knots in gel electrophoresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sphingomonas paucimobilis B90A is able to degrade the alpha-, beta-, gamma-, and delta-isomers of hexachlorocyclohexane (HCH). It contains the genes linA, linB, linC, linD, linE, and linR, which have been implicated in HCH degradation. In this study, dynamic expression of the lin genes was measured in chemostat-grown S. paucimobilis B90A by RNA dot blot hybridization and real-time reverse transcriptase PCR upon exposure to a pulse of different HCH isomers. Irrespective of the addition of HCH, linA, linB, and linC were all expressed constitutively. In contrast, linD and linE were induced with alpha-HCH (2 mg/liter) and gamma-HCH (7 mg/liter). A sharp increase in mRNA levels for linD and linE was observed from 10 to 45 min after the addition of alpha- or gamma-HCH. Induction of linD and linE was not detectable upon the addition of 0.7 mg of gamma-HCH per liter, although the compound was degraded by the cells. The addition of beta-HCH (5 mg/liter) or delta-HCH (20 mg/liter) did not lead to linE and linD induction, despite the fact that 50% of the compounds were degraded. This suggests that degradation of beta- and delta-HCH proceeds by a different pathway than that of alpha- and gamma-HCH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root JA signal velocities on wounding, revealing two distinct phases of JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.