132 resultados para SIGNAL-REGULATING KINASE-1
Resumo:
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Resumo:
RÉSUMÉ Les kinases activées par des mitogènes (MAPKs) constituent une importante famille d'enzymes conservée dans l'évolution. Elles forment un réseau de signalisation qui permet à la cellule de réguler spécifiquement divers processus impliqués dans la différenciation, la survie ou l'apoptose. Les kinases formant le module MAPK sont typiquement disposées en cascades de trois partenaires qui s'activent séquentiellement par phosphorylation. Le module minimum est constitué d'une MAPK kinase kinase (MAPKKK), d'une MAPK kinase (MAPKK) et d'une MAPK. Une fois activée, la MAPK phosphoryle différents substrats tels que des facteurs de transcription ou d'autres protéines. Chez les mammifères, trois groupes principaux de MAPKs ont été identifiés. Il s'agit du groupe des kinases régulées par des signaux extracellulaires du type «mitogènes » (ERK), ainsi que des groupes p38 et cJun NH2-terminal kinase (JNK), ou SAPK pour stress activated protein kinase, plutôt activées par des stimuli de type «stress ». De nombreuses études ont impliqué JNK dans la régulation de différents processus physiologiques et pathologiques, comme le diabète, les arthrites rhumatoïdes, l'athérosclérose, l'attaque cérébrale, les maladies de Parkinson et d'Alzheimer. JNK, en particulier joue un rôle dans la mort des cellules sécrétrices d'insuline induite par l'interleukine (IL)-1 β, lors du développement du diabète de type 1. IB1 est une protéine scaffold (échafaud) qui participe à l'organisation du module de JNK. IB1 est fortement exprimée dans les neurones et les cellules β du pancréas. Elle a été impliquée dans la survie des cellules, la régulation de l'expression du transporteur du glucose de type 2 (Glut-2) et dans le processus de sécrétion d'insuline glucose-dépendante. IBl est caractérisée par plusieurs domaines d'interaction protéine-protéine : un domaine de liaison à JNK (JBD), un domaine homologue au domaine 3 de Src (SH3) et un domaine d'interaction avec des tyrosines phosphorylées (PID). Des partenaires d'IB1, incluant les membres de la familles des kinases de lignée mélangée (MLKs), la MAPKK MKK7, la phosphatase 7 des MAPKs (MKP-7) ainsi que la chaîne légère de la kinésine, ont été isolés. Tous ces facteurs, sauf les MLKs et MKK7 interagissent avec le domaine PID ou l'extrême partie C-terminale d'IBl (la chaîne légère de la kinésine). Comme d'autres protéines scaffolds déjà décrites, IBl et un autre membre de la famille, IB2, sont capables d'homo- et d'hétérodimériser. L'interaction a lieu par l'intermédiaire de leur région C-terminale, contenant les domaines SH3 et PID. Mais ni le mécanisme moléculaire, ni la fonction de la dimérisation n'ont été caractérisés. Le domaine SH3 joue un rôle central lors de l'assemblage de complexes de macromolécules impliquées dans la signalisation intracellulaire. Il reconnaît de préférence des ligands contenant un motif riche en proline de type PxxP et s'y lie. Jusqu'à maintenant, tous les ligands isolés se liant à un domaine SH3 sont linéaires. Bien que le domaine SH3 soit un domaine important de la transmission des signaux, aucun partenaire interagissant spécifiquement avec le domaine SH3 d'IB1 n'a été identifié. Nous avons démontré qu'IBl homodimérisait par un nouveau set unique d'interaction domaine SH3 - domaine SH3. Les études de cristallisation ont démontré que l'interface recouvrait une région généralement impliquée dans la reconnaissance classique d'un motif riche en proline de type PxxP, bien que le domaine SH3 d'IB1 ne contienne aucun motif PxxP. L'homodimère d'IB1 semble extrêmement stable. Il peut cependant être déstabilisé par trois mutations ponctuelles dirigées contre des résidus clés impliqués dans la dimérisation. Chaque mutation réduit l'activation basale de JNK dépendante d'IB 1 dans des cellules 293T. La déstabilisation de la dimérisation induite par la sur-expression du domaine SH3, provoque une diminution de la sécrétion d'insuline glucose dépendant. SUMMARY Mitogen activated kinases (MAPK) are an important and conserved enzyme family. They form a signaling network required to specifically regulate process involved in cell differentiation, proliferation or death. A MAPK module is typically organized in a threekinase cascade which are activated by sequential phosphorylation. The MAPK kinase kinase (MAPKKK), the MAPK kinase (MAPKK) and the MAPK constitute the minimal module. Once activated, the MAPK phosphorylates its targets like transcription factors or other proteins. In mammals, three major groups of MAPKs have been identified : the group of extra-cellular regulated kinase (ERK) which is activated by mitogens and the group of p38 and cJun NH2-terminal kinase (JNK) or SAPK for stress activated protein kinase, which are activated by stresses. Many studies implicated JNK in many physiological or pathological process regulations, like diabetes, rheumatoid arthritis, arteriosclerosis, strokes or Parkinson and Alzheimer disease. In particular, JNK plays a crucial role in pancreatic β cell death induced by Interleukin (IL)-1 β in type 1 diabetes. Islet-brain 1 (IB 1) is a scaffold protein that interacts with components of the JNK signal-transduction pathway. IB 1 is expressed at high levels in neurons and in pancreatic β-cells, where it has been implicated in cell survival, in regulating expression of the glucose transporter type 2 (Glut-2) and in glucose-induced insulin secretion. It contains several protein-protein interaction domains, including a JNK-binding domain (JBD), a Src homology 3 domain (SH3) and a phosphotyrosine interaction domain (PID). Proteins that have been shown to associate with IB 1 include members of the Mixed lineage kinase family (MLKs), the MAPKK MKK7, the MAPK phosphatase-7 MKP7, as well as several other ligands including kinesin light chain, LDL receptor related family members and the amyloid precursor protein APP. All these factors, except MLK3 and MKK7 have been shown to interact with the PID domain or the extreme C-terminal part (Kinesin light chain) of IB 1. As some scaffold already described, IB 1 and another member of the family, IB2, have previously been shown to engage in oligomerization through their respective C-terminal regions that include the SH3 and PID domains. But neither the molecular mechanisms nor the function of dimerization have yet been characterized. SH3 domains are central in the assembly of macromolecular complexes involved in many intracellular signaling pathways. SH3 domains are usually characterized by their preferred recognition of and association with canonical PxxP motif. In all these cases, a single linear sequence is sufficient for binding to the SH3 domain. However, although SH3 domains are important elements of signal transduction, no protein that interacts specifically with the SH3 domain of IB 1 has been identified so far. Here, we show that IB 1 homodimerizes through a navel and unique set of SH3-SH3 interactions. X-ray crystallography studies indicate that the dieter interface covers a region usually engaged in PxxP-mediated ligand recognition, even though the IB 1 SH3 domain lacks this motif. The highly stable IB 1 homodimer can be significantly destabilized in vitro by individual point-mutations directed against key residues involved in dimerization. Each mutation reduces IB 1-dependent basal JNK activity in 293T cells. Impaired dimerization induced by over-expression of the SH3 domain also results in a significant reduction in glucose-dependent insulin secretion in pancreatic β-cells.
Resumo:
The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.
Resumo:
Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.
Resumo:
Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.
Resumo:
PURPOSE: The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. METHODS: The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. RESULTS: White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB < 20%) with relatively small concentration differences (< 0.3 μmol/g), except Glu (± 0.8 μmol/g). CONCLUSION: Given the small quantification differences, we conclude that a general macromolecule baseline provides a sufficiently accurate neurochemical profile in occipital lobe at 7T in healthy human brain.
Resumo:
OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.
Resumo:
Interleukin-1β (IL-1β) is a potent inflammatory cytokine that is usually cleaved and activated by inflammasome-associated caspase-1. To determine whether IL-1β activation is regulated by inhibitor of apoptosis (IAP) proteins, we treated macrophages with an IAP-antagonist "Smac mimetic" compound or genetically deleted the genes that encode the three IAP family members cIAP1, cIAP2, and XIAP. After Toll-like receptor priming, IAP inhibition triggered cleavage of IL-1β that was mediated not only by the NLRP3-caspase-1 inflammasome, but also by caspase-8 in a caspase-1-independent manner. In the absence of IAPs, rapid and full generation of active IL-1β by the NLRP3-caspase-1 inflammasome, or by caspase-8, required the kinase RIP3 and reactive oxygen species production. These results demonstrate that activation of the cell death-inducing ripoptosome platform and RIP3 can generate bioactive IL-1β and implicate them as additional targets for the treatment of pathological IL-1-driven inflammatory responses.
Resumo:
The Notch and Calcineurin/NFAT pathways have both been implicated in control of keratinocyte differentiation. Induction of the p21(WAF1/Cip1) gene by Notch 1 activation in differentiating keratinocytes is associated with direct targeting of the RBP-Jkappa protein to the p21 promoter. We show here that Notch 1 activation functions also through a second Calcineurin-dependent mechanism acting on the p21 TATA box-proximal region. Increased Calcineurin/NFAT activity by Notch signaling involves downregulation of Calcipressin, an endogenous Calcineurin inhibitor, through a HES-1-dependent mechanism. Besides control of the p21 gene, Calcineurin contributes significantly to the transcriptional response of keratinocytes to Notch 1 activation, both in vitro and in vivo. In fact, deletion of the Calcineurin B1 gene in the skin results in a cyclic alopecia phenotype, associated with altered expression of Notch-responsive genes involved in hair follicle structure and/or adhesion to the surrounding mesenchyme. Thus, an important interconnection exists between Notch 1 and Calcineurin-NFAT pathways in keratinocyte growth/differentiation control.
Resumo:
Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.
Resumo:
Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress.