218 resultados para Right lateral orbital gyrus
Resumo:
The free extended lateral arm flap (ELAF) has gained increasing popularity thank to its slimness and versatility, longer neurovascular pedicle, and greater flap size when compared with the original flap design. The aim of this study was to assess the donor-site morbidity associated with this extended procedure. A retrospective study of 25 consecutive patients analyzing postoperative complications using a visual analogue scale questionnaire revealed high patients satisfaction and negligible donor-site morbidity of the ELAF. Scar visibility was the commonest negative outcome. Impaired mobility of the elbow had the highest correlation with patient dissatisfaction. Sensory deficits or paresthetic disorders did not affect patient satisfaction. The extension of the lateral arm flap and positioning over the lateral humeral epicondyle is a safe and well-accepted procedure with minimal donor-site morbidity. To optimize outcomes, a maximal flap width of 6 or 7 cm and intensive postoperative mobilization therapy is advisable.
Resumo:
BACKGROUND: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). METHODS/PRINCIPAL FINDINGS: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated. CONCLUSION/SIGNIFICANCE: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole. TRIAL REGISTRATION: Clinicaltrials.gov NCT00690118.
Resumo:
BACKGROUND: Outcome following foot and ankle surgery can be assessed by disease- and region-specific scores. Many scoring systems exist, making comparison among studies difficult. The present study focused on outcome measures for a common foot and ankle abnormality and compared the results obtained by 2 disease-specific and 2 body region-specific scores. METHODS: We reviewed 41 patients who underwent lateral ankle ligament reconstruction. Four outcome scales were administered simultaneously: the Cumberland Ankle Instability Tool (CAIT) and the Chronic Ankle Instability Scale (CAIS), which are disease specific, and the American Orthopedic Foot & Ankle Society (AOFAS) hindfoot scale and the Foot and Ankle Ability Measure (FAAM), which are both body region-specific. The degree of correlation between scores was assessed by Pearson's correlation coefficient. Nonparametric tests, the Kruskal-Wallis and the Mann-Whitney test for pairwise comparison of the scores, were performed. RESULTS: A significant difference (P < .005) was observed between the CAIS and the AOFAS score (P = .0002), between the CAIS and the FAAM 1 (P = .0001), and between the CAIT and the AOFAS score (P = .0003). CONCLUSIONS: This study compared the performances of 4 disease- and body region-specific scoring systems. We demonstrated a correlation between the 4 administered scoring systems and notable differences between the results given by each of them. Disease-specific scores appeared more accurate than body region-specific scores. A strong correlation between the AOFAS score and the other scales was observed. The FAAM seemed a good compromise because it offered the possibility to evaluate the patient according to his or her own functional demand. CLINICAL RELEVANCE: The present study contributes to the development of more critical and accurate outcome assesment methods in foot and ankle surgery.
Resumo:
The ability to discriminate conspecific vocalizations is observed across species and early during development. However, its neurophysiologic mechanism remains controversial, particularly regarding whether it involves specialized processes with dedicated neural machinery. We identified spatiotemporal brain mechanisms for conspecific vocalization discrimination in humans by applying electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to acoustically and psychophysically controlled nonverbal human and animal vocalizations as well as sounds of man-made objects. AEP strength modulations in the absence of topographic modulations are suggestive of statistically indistinguishable brain networks. First, responses were significantly stronger, but topographically indistinguishable to human versus animal vocalizations starting at 169-219 ms after stimulus onset and within regions of the right superior temporal sulcus and superior temporal gyrus. This effect correlated with another AEP strength modulation occurring at 291-357 ms that was localized within the left inferior prefrontal and precentral gyri. Temporally segregated and spatially distributed stages of vocalization discrimination are thus functionally coupled and demonstrate how conventional views of functional specialization must incorporate network dynamics. Second, vocalization discrimination is not subject to facilitated processing in time, but instead lags more general categorization by approximately 100 ms, indicative of hierarchical processing during object discrimination. Third, although differences between human and animal vocalizations persisted when analyses were performed at a single-object level or extended to include additional (man-made) sound categories, at no latency were responses to human vocalizations stronger than those to all other categories. Vocalization discrimination transpires at times synchronous with that of face discrimination but is not functionally specialized.
Resumo:
We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME × GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD.
Resumo:
Glutamatergic gliotransmission provides a stimulatory input to excitatory synapses in the hippocampal dentate gyrus. Here, we show that tumor necrosis factor-alpha (TNFα) critically controls this process. With constitutive TNFα present, activation of astrocyte P2Y1 receptors induces localized [Ca(2+)](i) elevations followed by glutamate release and presynaptic NMDA receptor-dependent synaptic potentiation. In preparations lacking TNFα, astrocytes respond with identical [Ca(2+)](i) elevations but fail to induce neuromodulation. We find that TNFα specifically controls the glutamate release step of gliotransmission. In cultured astrocytes lacking TNFα glutamate exocytosis is dramatically slowed down due to altered vesicle docking. Addition of low picomolar TNFα promptly reconstitutes both normal exocytosis in culture and gliotransmission in situ. Alternatively, gliotransmission can be re-established without adding TNFα, by limiting glutamate uptake, which compensates slower release. These findings demonstrate that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca(2+)](i) elevations but also by permissive/homeostatic factors like TNFα. VIDEO ABSTRACT:
Resumo:
Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
Liver vascularization is known to present with several different variations. Generally, a normal vascular anatomy is reported in up to 50-80 % of cases. For this reason, a precise preoperative mapping of the hepatic vascularization prior to pancreatic surgery is essential to avoid injuries and subsequent complications. We report here a case of a young patient scheduled for Whipple procedure, who presented an arterial pattern type Michels IV, variation reported in 0.6 to 3 % in the literature. Another interesting particularity of this case was the fact that the right hepatic artery had a prepancreatic course. We think that every surgeon performing hepatopancreatic surgery should have heard of this special and rare situation.