192 resultados para Protéine kinase A
Resumo:
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.
Resumo:
Reproductive division of labour is a defining characteristic of eusociality in insect societies. The task of reproduction is performed by the fertile males and queens of the colony, while the non-fertile female worker caste performs all other tasks related to colony upkeep, foraging and nest defence. Division of labour, or polyethism, within the worker caste is organized such that specific tasks are performed by discrete groups of individuals. Ordinarily, workers of one group will not participate in the tasks of other groups making the groups of workers behaviourally distinct. In some eusocial species, this has led to the evolution of a remarkable diversity of subcaste morphologies within the worker caste, and a division of labour amongst the subcastes. This caste polyethism is best represented in many species of ants where a smaller-bodied minor subcaste typically performs foraging duties while larger individuals of the major subcaste are tasked with nest defence. Recent work suggests that polyethism in the worker caste is influenced by an evolutionarily conserved, yet diversely regulated, gene called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). Additionally, flexibility in the activity of this enzyme allows for workers from one task group to assist the workers of other task groups in times of need during the colony's life.
Resumo:
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome.
Resumo:
Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.
Resumo:
Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.
Resumo:
MEK kinase 1 (MEKK1) is a 196-kDa enzyme that is involved in the regulation of the c-Jun N-terminal kinase (JNK) pathway and apoptosis. In cells exposed to genotoxic agents including etoposide and cytosine arabinoside, MEKK1 is cleaved at Asp874 by caspases. The cleaved kinase domain of MEKK1, itself, stimulates caspase activity leading to apoptosis. Kinase-inactive MEKK1 expressed in HEK293 cells effectively blocks genotoxin-induced apoptosis. Treatment of cells with taxol, a microtubule stabilizing agent, did not induce MEKK1 cleavage in cells, and kinase-inactive MEKK1 expression failed to block taxol-induced apoptosis. MEKK1 became activated in HEK293 cells exposed to taxol, but in contrast to etoposide-treatment, taxol failed to increase JNK activity. Taxol treatment of cells, therefore, dissociates MEKK1 activation from the regulation of the JNK pathway. Overexpression of anti-apoptotic Bcl2 blocked MEKK1 and taxol-induced apoptosis but did not block the caspase-dependent cleavage of MEKK1 in response to etoposide. This indicates Bcl2 inhibition of apoptosis is, therefore, downstream of caspase-dependent MEKK1 cleavage. The results define the involvement of MEKK1 in the induction of apoptosis by genotoxins but not microtubule altering drugs.
Resumo:
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Resumo:
Whether the response of the fetal heart to ischemia-reperfusion is associated with activation of the c-Jun N-terminal kinase (JNK) pathway is not known. In contrast, involvement of the sarcolemmal L-type Ca2+ channel (LCC) and the mitochondrial KATP (mitoKATP) channel has been established. This work aimed at investigating the profile of JNK activity during anoxia-reoxygenation and its modulation by LCC and mitoK(ATP) channel. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (60 min). Using the kinase assay method, the profile of JNK activity in the ventricle was determined every 10 min throughout anoxia-reoxygenation. Effects on JNK activity of the LCC blocker verapamil (10 nM), the mitoK(ATP) channel opener diazoxide (50 microM) and the blocker 5-hydroxydecanoate (5-HD, 500 microM), the mitochondrial Ca2+ uniporter (MCU) inhibitor Ru360 (10 microM), and the antioxidant N-(2-mercaptopropionyl) glycine (MPG, 1 mM) were determined. In untreated hearts, JNK activity was increased by 40% during anoxia and peaked fivefold relative to basal level after 30-40 min reoxygenation. This peak value was reduced by half by diazoxide and was tripled by 5-HD. Furthermore, the 5-HD-mediated stimulation of JNK activity during reoxygenation was abolished by diazoxide, verapamil or Ru360. MPG had no effect on JNK activity, whatever the conditions. None of the tested pharmacological agents altered JNK activity under basal normoxic conditions. Thus, in the embryonic heart, JNK activity exhibits a characteristic pattern during anoxia and reoxygenation and the respective open-state of LCC, MCU and mitoKATP channel can be a major determinant of JNK activity in a ROS-independent manner.
Resumo:
J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06705.x Abstract Retinal excitotoxicity is associated with retinal ischemia, and with glaucomatous and traumatic optic neuropathy. The present study investigates the role of c-Jun N-terminal kinase (JNK) activation in NMDA-mediated retinal excitotoxicity and determines whether neuroprotection can be obtained with the JNK pathway inhibitor, d-form of JNK-inhibitor 1 (d-JNKI-1). Young adult rats received intravitreal injections of 20 nmol NMDA, which caused extensive neuronal death in the inner nuclear and ganglion cell layers. This excitotoxicity was associated with strong activation of calpain, as revealed by fodrin cleavage, and of JNK. The cell-permeable peptide d-JNKI-1 was used to inhibit JNK. Within 40 min of its intravitreal injection, FITC-labeled d-JNKI-1 spread through the retinal ganglion cell layer into the inner nuclear layer and interfered with the NMDA-induced phosphorylation of JNK. Injections of unlabeled d-JNKI-1 gave unprecedentedly strong neuroprotection against cell death in both layers, lasting for at least 10 days. The NMDA-induced calpain-specific fodrin cleavage was likewise strongly inhibited by d-JNKI-1. Moreover the electroretinogram was partially preserved by d-JNKI-1. Thus, the JNK pathway is involved in NMDA-mediated retinal excitotoxicity and JNK inhibition by d-JNKI-1 provides strong neuroprotection as shown morphologically, biochemically and physiologically.
Resumo:
RESUME DESTINE AUX NON SCIENTIFIQUESLe diabète est une maladie associée à un excès de glucose (sucre) dans le sang. Le taux de glucose sanguin augmente lorsque l'action d'une hormone, l'insuline, responsable du transport du glucose du sang vers les tissus de l'organisme diminue, ou lorsque les quantités d'insuline à disposition sont inadéquates.L'une des causes communes entre les deux grands types de diabète connus, le type 1 et le type 2, est la disparition des cellules beta du pancréas, spécialisées dans la sécrétion d'insuline, par mort cellulaire programmée aussi appelée apoptose. Alors que dans le diabète de type 1, la destruction des cellules beta est causée par notre propre système immunitaire, dans le diabète de type 2, la mort de ces cellules, est principalement causée par des concentrations élevées de graisses saturés ou de molécules impliquées dans l'inflammation que l'on rencontre en quantités augmentées chez les personnes obèses. Etant donné l'augmentation épidémique du nombre de personnes obèses de par le monde, on estime que le nombre de personnes diabétiques (dont une majorité sont des diabétiques de type 2), va passer de 171 million en l'an 2000, à 366 million en l'an 2030, expliquant la nécessité absolue de mettre au point de nouvelles stratégies thérapeutique pour combattre cette maladie.L'apoptose est un processus complexe dont la dérégulation induit de nombreuses affections allant du cancer jusqu'au diabète. L'activation de caspase 3, une protéine clé contrôlant la mort cellulaire, était connue pour systématiquement mener à la mort cellulaire programmée. Ces dernières années, notre laboratoire a décrit des mécanismes de survie qui sont activés par caspase 3 et qui expliquent sans doute pourquoi son activation ne mène pas systématiquement à la mort cellulaire. Lorsqu'elle est faiblement activée, caspase 3 clive une autre protéine appelée RasGAP en deux protéines plus courtes dont l'une, appelée le fragment Ν a la particularité de protéger les cellules contre l'apoptose.Durant ma thèse, j'ai été impliqué dans divers projets destinés à mieux comprendre comment le fragment Ν protégeait les cellules contre l'apoptose et à savoir s'il pouvait être utilisé comme outil thérapeutique dans les conditions de survenue d'un diabète expérimental. C'est dans ce but que nous avons créé une souris transgénique, appelée RIP-N, exprimant le fragment Ν spécifiquement dans les cellules beta. Comme attendu, les cellules beta de ces souris étaient plus résistantes à la mort induite par des composés connus pour induire le diabète, comme certaines molécules induisant l'inflammation ou les graisses saturées. Nous avons ensuite pu montrer que les souris RIP-N étaient plus résistantes à la survenue d'un diabète expérimental que ce soit par l'injection d'une drogue induisant l'apoptose des cellules beta, que ce soit dans un fond génétique caractérisé par une attaque spontanée des cellules beta par le système immunitaire ou dans le contexte d'un diabète de type 2 induit par l'obésité. Dans plusieurs des modèles animaux étudiés, nous avons pu montrer que le fragment Ν protégeait les cellules en activant une voie protectrice bien connue impliquant successivement les protéines Ras, PI3K et Akt ainsi qu'en bloquant la capacité d'Akt d'activer le facteur NFKB, connu pour être délétère pour la survie de la cellule beta. La capacité qu'a le fragment Ν d'activer Akt tout en prévenant l'activation de NFKB par Akt est par conséquent particulièrement intéressante dans l'intégration des signaux régulant la mort cellulaire dans le contexte de la survenue d'un diabète.La perspective d'utiliser le fragment Ν comme outil thérapeutique dépendra de notre capacité à activer les signaux protecteurs induits par le fragment Ν depuis l'extérieur de la cellule ou de dériver des peptides perméables aux cellules possédant les propriétés du fragment N.2 SUMMARYDiabetes mellitus is an illness associated with excess blood glucose. Blood glucose levels raise when the action of insulin decreases or when insulin is provided in inappropriate amounts. In type 1 diabetes (T1D) as well as in type 2 diabetes (T2D), the insulin secreting beta cells in the pancreas undergo controlled cell death also called apoptosis. Whereas in T1D, beta cells are killed by the immune system, in T2D, they are killed by several factors, among which are increased blood glucose levels, increased levels of harmful lipids or pro-inflammatory cytokines that are released by the dysfunctional fat tissue of obese people. Given the epidemic increase in the number of obese people throughout the world, the number of diabetic people (a majority of which are type 2 diabetes) is estimated to rise from 171 million affected people in the year 2000 to 366 million in 2030 explaining the absolute requirement for new therapies to fight the disease.Apoptosis is a very complex process whose deregulation leads to a wide range of diseases going from cancer to diabetes. Caspase 3 although known as a key molecule controlling apoptosis, has been shown to have various other functions. In the past few years, our laboratory has described a survival mechanism, that takes place at low caspase activity and that might explain how cells that activate their caspases for reasons other than apoptosis survive. In such conditions, caspase 3 cleaves another protein called RasGAP into two shorter proteins, one of which, called fragment N, protects cells from apoptosis.We decided to check whether fragment Ν could be used as a therapeutical tool in the context of diabetes inducing conditions. We thus derived a transgenic mouse line, called RIP-N, in which the expression of fragment Ν is restricted to beta cells. As expected, the beta cells of these mice were more resistant ex-vivo to cell death induced by diabetes inducing factors. We then showed that the RIP-N transgenic mice were resistant to streptozotocin induced diabetes, a mouse model mimicking type 1 diabetes, which correlated to fewer number of apoptotic beta cells in the pancreas of the transgenic mice compared to their controls. The RIP-N transgene also delayed overt diabetes development in the NOD background, a mouse model of autoimmune type 1 diabetes, and delayed the occurrence of obesity induced hyperglycemia in a mouse model of type 2-like diabetes. Interestingly, fragment Ν was mediating its protection by activating the protective Akt kinase, and by blocking the detrimental NFKB factor. Our future ability to activate the protective signals elicited by fragment Ν from the outside of cells or to derive cell permeable peptides bearing the protective properties of fragment Ν might condition our ability to use this protein as a therapeutic tool.3 RESUMELe diabète est une maladie associée à un excès de glucose plasmatique. La glycémie augmente lorsque l'action de l'insuline diminue ou lorsque les quantités d'insuline à disposition sont inadéquates. Dans le diabète de type 1 (D1) comme dans le diabète de type 2 (D2), les cellules beta du pancréas subissent la mort cellulaire programmée aussi appelée apoptose. Alors que dans le D1 les cellules beta sont tuées par le système immunitaire, dans le D2 elles sont tuées par divers facteurs parmi lesquels on trouve des concentrations élevées de glucose, d'acides gras saturés ou de cytokines pro-inflammatoires qui sont sécrétées en concentrations augmentées par le tissu adipeux dysfonctionnel des personnes obèses. Etant donné l'augmentation épidémique du nombre de personnes obèses de par le monde, on estime que le nombre de personnes diabétiques (dont une majorité sont des diabétiques de type 2), va passer de 171 million en l'an 2000, à 366 million en l'an 2030, justifiant la nécessité absolue de mettre au point de nouvelles stratégies thérapeutique pour combattre cette maladie.L'apoptose est un processus complexe dont la dérégulation induit de nombreuses affections allant du cancer jusqu'au diabète. Caspase 3, bien que connue comme étant une protéine clé contrôlant l'apoptose a bien d'autres fonctions démontrées. Ces dernières années, notre laboratoire a décrit un mécanisme de survie qui est activé lorsque caspase 3 est faiblement activée et qui explique probablement comment des cellules qui ont activé leurs caspases pour une autre raison que l'apoptose peuvent survivre. Dans ces conditions, caspase 3 clive une autre protéine appelée RasGAP en deux protéines plus courtes dont l'une, appelée le fragment Ν a la particularité de protéger les cellules contre l'apoptose.Nous avons donc décidé de vérifier si le fragment Ν pouvait être utilisé comme outil thérapeutique dans les conditions de survenue d'un diabète expérimental. Pour se faire, nous avons créé une souris transgénique, appelée RIP-N, exprimant le fragment Ν spécifiquement dans les cellules beta. Comme attendu, les cellules beta de ces souris étaient plus résistantes ex-vivo à la mort induite par des facteurs pro-diabétogènes. Nous avons ensuite pu montrer que les souris RIP-N étaient plus résistantes à la survenue d'un diabète induit par la streptozotocine, un drogue mimant la survenue d'un D1 et que ceci était corrélée à une diminution du nombre de cellules en apoptose dans le pancréas des souris transgéniques comparé à leurs contrôles. L'expression du transgène a aussi eu pour effet de retarder la survenue d'un diabète franc dans le fond génétique NOD, un modèle génétique de diabète de type 1 auto-immun, ainsi que de retarder la survenue d'une hyperglycémie dans un modèle murin de diabète de type 2 induit par l'obésité. Dans plusieurs des modèles animaux étudiés, nous avons pu montrer que le fragment Ν protégeait les cellules en activant la kinase protectrice Akt ainsi qu'en bloquant le facteur délétère NFKB. La perspective d'utiliser le fragment Ν comme outil thérapeutique dépendra de notre capacité à activer les signaux protecteurs induits par le fragment Ν depuis l'extérieur de la cellule ou de dériver des peptides perméables aux cellules possédant les propriétés du fragment
Resumo:
In a primary cell culture system of fetal rat brain, the calmodulin-dependent protein-kinase IV (CaMKIV) could be induced by the thyroid hormone T3 in a time- and concentration-dependent manner, provided the tissue was excised not later than day 15 of gestation (E15) (Krebs et al., J. Biol. Chem. 271, 11055, 1996). We report here that in the fetal thymus CaMKIV could not be detected earlier than day 16 of gestation and that the expression of this enzyme was fully upregulated at day 18. In mouse fetal thymus organ culture (FTOC) of day 14 embryonic thymus, CaMKIV could not be detected, even after several days of culture if a minimal culture medium lacking fetal calf serum was used. However, after addition of fetal calf serum to the culture medium the expression of CaMKIV could be specifically induced. Furthermore, it could also be shown that during T-cell development in the adult murine thymus the expression of CaMKIV was tightly regulated. Taken together, these results demonstrate that the expression of CaMKIV, an enzyme involved in the regulation of Ca(2+)-dependent gene expression, is itself under stringent regulatory control during tissue development.
Resumo:
The peroxisome proliferator-activator receptor PPARgamma plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARgamma. Although the interplay between CD36 and PPARgamma in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARgamma remains unknown. Here, we demonstrate that ghrelin triggers PPARgamma activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRalpha and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARgamma phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARgamma Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARgamma activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARgamma response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Galphaq-dependent manner, resulting in Akt recruitment to PPARgamma, enhanced PPARgamma phosphorylation and activation independently of Ser-84, and increased expression of LXRalpha and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Galphaq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARgamma to ghrelin in macrophages.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.
Resumo:
We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.