180 resultados para Polymorphism, genetic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Genetic studies have shown an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL), the key enzyme for glutathione (GSH) synthesis. The present study was aimed at analyzing the influence of a GSH dysregulation of genetic origin on plasma thiols (total cysteine, homocysteine, and cysteine-glycine) and other free amino acid levels as well as fibroblast cultures GSH levels. Plasma thiols levels were also compared between patients and controls. As compared with patients with a low-risk GCLC GAG TNR genotype, patients with a high-risk genotype, having an impaired GSH synthesis, displayed a decrease of fibroblast GSH and plasma total cysteine levels, and an increase of the oxidized form of cysteine (cystine) content. Increased levels of plasma free serine, glutamine, citrulline, and arginine were also observed in the high-risk genotype. Taken together, the high-risk genotypes were associated with a subgroup of schizophrenia characterized by altered plasma thiols and free amino acid levels that reflect a dysregulation of redox control and an increased susceptibility to oxidative stress. This altered pattern potentially contributes to the development of a biomarker profile useful for early diagnosis and monitoring the effectiveness of novel drugs targeting redox dysregulation in schizophrenia. Antioxid. Redox Signal. 15, 2003-2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of mitochondrial DNA (mtDNA) control region polymorphism and of variation at 10 nuclear microsatellite loci were used to investigate the mechanisms and genetic consequences of postglacial expansion of Myotis myotis in Europe. Initial sampling consisted of 480 bats genotyped in 24 nursery colonies arranged along a transect of approximately 3000 km. The phylogeographical survey based on mtDNA sequences revealed the existence of major genetic subdivisions across this area, with several suture zones between haplogroups. Such zones of secondary contact were found in the Alps and Rhodopes, whereas other potential barriers to gene flow, like the Pyrenees, did not coincide with genetic discontinuities. Areas of population admixture increased locally the genetic diversity of colonies, which confounded the northward decrease in nucleotide diversity predicted using classical models of postglacial range expansion. However, when analyses were restricted to a subset of 15 nurseries originating from a single presumed glacial refugium, mtDNA polymorphism did indeed support a northwards decrease in diversity. Populations were also highly structured (PhiST = 0.384). Conversely, the same subset of colonies showed no significant latitudinal decrease in microsatellite diversity and much less population structure (FST = 0.010), but pairwise genetic differentiation at these nuclear markers was strongly correlated with increasing geographical distance. Together, this evidence suggests that alleles carried via male bats have maintained enough nuclear gene flow to counteract the effects of recurrent bottlenecks generally associated with recolonization processes. As females are highly philopatric, we argue that the maternally transmitted mtDNA marker better reflects the situation of past, historical gene flow, whereas current levels of gene flow are better reflected by microsatellite markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is likely to change as an evolutionary or plastic response to climate warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation in the 3' untranslated region (3'UTR) of the HLA-C locus determines binding of the microRNA Hsa-miR-148a, resulting in lower cell surface expression of alleles that bind miR-148a relative to those alleles that escape its binding. The HLA-C 3'UTR variant was shown to associate with HIV control, but like the vast majority of disease associations in a region dense with causal candidates, a direct effect of HLA-C expression level on HIV control was not proven. We demonstrate that a MIR148A insertion/deletion polymorphism associates with its own expression levels, affecting the extent to which HLA-C is down-regulated, the level of HIV control, and the risk of Crohn disease only among those carrying an intact miR-148a binding site in the HLA-C 3'UTR. These data illustrate a direct effect of HLA-C expression level on HIV control that cannot be attributed to other HLA loci in linkage disequilibrium with HLA-C and highlight the rich complexity of genetic interactions in human disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the spatial and temporal variation of species diversity and genetic diversity in a metacommunity comprising 16 species of freshwater gastropods. We monitored species abundance at five localities of the Ain river floodplain in southeastern France, over a period of four years. Using 190 AFLP loci, we monitored the genetic diversity of Radix balthica, one of the most abundant gastropod species of the metacommunity, twice during that period. An exceptionally intense drought occurred during the last two years and differentially affected the study sites. This allowed us to test the effect of natural disturbances on changes in both genetic and species diversity. Overall, local (alpha) diversity declined as reflected by lower values of gene diversity H(S) and evenness. In parallel, the among-sites (beta) diversity increased at both the genetic (F(ST)) and species (F(STC)) levels. These results suggest that disturbances can lead to similar changes in genetic and community structure through the combined effects of selective and neutral processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. RESULTS: A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10(-11)). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extensive variability of individual human genomes contributes to phenotypic variability. Structural genomic variants, and copy number variants (CNVs) in particular, have recently been rediscovered as contributors to the genomic plasticity and evolution and as pathoetiologic elements for both monogenic and complex traits. Herein we review some of the consequences of CNVs in the context of human inherited diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor 21 (FGF21) is a novel master regulator of metabolic profile. The biological actions of FGF21 are elicited upon its klotho beta (KLB)-facilitated binding to FGF receptor 1 (FGFR1), FGFR2 and FGFR3. We hypothesised that common polymorphisms in the FGF21 signalling pathway may be associated with metabolic risk. At the screening stage, we examined associations between 63 common single-nucleotide polymorphisms (SNPs) in five genes of this pathway (FGF21, KLB, FGFR1, FGFR2, FGFR3) and four metabolic phenotypes (LDL cholesterol - LDL-C, HDL-cholesterol - HDL-C, triglycerides and body mass index) in 629 individuals from Silesian Hypertension Study (SHS). Replication analyses were performed in 5478 unrelated individuals of the Swiss CoLaus cohort (imputed genotypes) and in 3030 directly genotyped individuals of the German Myocardial Infarction Family Study (GerMIFS). Of 54 SNPs that met quality control criteria after genotyping in SHS, 4 (rs4733946 and rs7012413 in FGFR1; rs2071616 in FGFR2 and rs7670903 in KLB) showed suggestive association with LDL-C (P=0.0006, P=0.0013, P=0.0055, P=0.011, respectively) and 1 (rs2608819 in KLB) was associated with body mass index (P=0.011); all with false discovery rate q<0.5. Of these, only one FGFR2 polymorphism (rs2071616) showed replicated association with LDL-C in both CoLaus (P=0.009) and men from GerMIFS (P=0.017). The direction of allelic effect of rs2071616 upon LDL-C was consistent in all examined populations. These data show that common genetic variations in FGFR2 may be associated with LDL-C in subjects of white European ancestry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C. METHODOLOGY/PRINCIPAL FINDINGS: Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D(3) (25[OH]D(3)) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061-2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D(3)<20 ng/mL) during all seasons, but 25(OH)D(3) serum levels were not associated with treatment outcome. CONCLUSIONS/SIGNIFICANCE: Our study suggests a role of bioactive vitamin D (1,25[OH](2)D(3), calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D(3) is not a suitable predictor of treatment outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: In the last decade, pegylated interferon-α (PegIFN-α) plus ribavirin (RBV) was the standard treatment of chronic hepatitis C for genotype 1, and it remains the standard for genotypes 2 and 3. Recent studies reported associations between RBV-induced anemia and genetic polymorphisms of concentrative nucleoside transporters such as CNT3 (encoded by SLC28A3) and inosine triphosphatase (encoded by ITPA). We aimed at studying genetic determinants of RBV kinetics, efficacy and treatment-associated anemia. METHODS: We included 216 patients from two Swiss study cohorts (61% HCV genotype 1, 39% genotypes 2 or 3). Patients were analyzed for SLC28A2 single nucleotide polymorphism (SNP) rs11854484, SLC28A3 rs56350726, and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101, and followed for treatment-associated hemoglobin changes and sustained virological response (SVR). In 67 patients, RBV serum levels were additionally measured during treatment. RESULTS: Patients with SLC28A2 rs11854484 genotype TT had higher dosage- and body weight-adjusted RBV levels than those with genotypes TC or CC (p=0.02 and p=0.06 at weeks 4 and 8, respectively). ITPA SNP rs1127354 was associated with hemoglobin drop ≥3 g/dl during treatment, in genotype (relative risk (RR)=2.1, 95% CI 1.3-3.5) as well as allelic analyses (RR=2.0, 95%CI 1.2-3.4). SLC28A3 rs56350726 was associated with SVR in genotype (RR=2.2; 95% CI 1.1-4.3) as well as allelic analyses (RR=2.0, 95% CI 1.1-3.4). CONCLUSIONS: The newly identified association between RBV serum levels and SLC28A2 rs11854484 genotype, as well as the replicated association of ITPA and SLC28A3 genetic polymorphisms with RBV-induced anemia and treatment response, may support individualized treatment of chronic hepatitis C and warrant further investigation in larger studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study factors associated with anemia and its effect on survival in HIV-infected persons treated with modern combined antiretroviral therapy (cART), we characterized the prevalence of anemia in the Veterans Aging Cohort Study (VACS) and used a candidate gene approach to identify proinflammatory gene single nucleotide polymorphisms (SNPs) associated with anemia in HIV disease. The study comprised 1597 HIV(+) and 865 HIV(-) VACS subjects with DNA, blood, and annotated clinical data available for analysis. Anemia was defined according to World Health Organization criteria (hemoglobin < 13 g/dL and < 12 g/dL in men and women, respectively). The prevalence of anemia in HIV(+) and HIV(-) subjects was 23.1% and 12.9%, respectively. Independent of HIV status, anemia was present in 23.4% and 8% in blacks and whites, respectively. Analysis of our candidate genes revealed that the leptin -2548 G/A SNP was associated with anemia in HIV(+), but not HIV(-), patients, with the AA and AG genotypes significantly predicting anemia (P < .003 and P < .039, respectively, logistic regression). This association was replicated in an independent cohort of HIV(+) women. Our study provides novel insight into the association between genetic variability in the leptin gene and anemia in HIV(+) individuals.