163 resultados para Plasma processing and deposition
Resumo:
There is anecdotal evidence that athletes use the banned substance Synacthen because of its perceived benefit with its associated rise in cortisol. To test the performance-enhancing effects of Synacthen, eight trained cyclists completed two, 2-day exercise sessions separated by 7-10 days. On the first day of each 2-day exercise session, subjects received either Synacthen (0.25 mg, TX) or placebo (PLA) injection. Performance was assessed by a 20-km time trial (TT) after a 90-min fatigue period on day 1 and without the fatiguing protocol on day 2. Plasma androgens and ACTH concentrations were measured during the exercise bouts as well as the rate of perceived exertion (RPE). Spot urines were analyzed for androgens and glucocorticoids quantification. Basal plasma hormones did not differ significantly between PLA and TX groups before and 24 h after the IM injection (P > 0.05). After TX injection, ACTH peaked at 30 min and hormone profiles were significantly different compared to the PLA trial (P < 0.001). RPE increased significantly in both groups as the exercise sessions progressed (P < 0.001) but was not influenced by treatment. The time to completion of the TT was not affected on both days by Synacthen treatment. In the present study, a single IM injection of synthetic ACTH did not improve either acute or subsequent cycling performance and did not influence perceived exertion. The investigated urinary hormones did not vary after treatment, reinforcing the difficulty for ACTH abuse detection.
Resumo:
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
Purpose: Plasma adiponectin and serum uric acid (SUA) levels are negatively correlated. To better understand the possible mechanisms linking adiponectin and uric acid, we analyzed whether the association between adiponectin and SUA differed by hypertension status (or blood pressure level) and by sex. Methods and materials: We analyzed data from the populationbased CoLaus study (Switzerland). Fasting plasma adiponectin levels were assessed by ELISA and SUA by uricase-PAP. Blood pressure (BP) was measured using a validated automated device and hypertension was defined as having office BP 140/90 mm Hg or being on current antihypertensive treatment. Results: In the 2897 men and 3181 women, aged 35-74, BMI (mean ± SD) was 26.6 ± 4.0 and 25.1 ± 4.8 Kg/m2, systolic blood pressure (SBP) was 132.2 ± 16.6 and 124.8 ± 18.3 mm Hg, median (interquartile range) plasma adiponectin was 6.2 (4.1-9.2) and 10.6 (6.9-15.4) mg/dL, and hypertension prevalence was 42.0% and 30.2%, respectively. The age- and BMI- adjusted partial correlation coefficients between log-adiponectin and SUA were 0.09 and 0.06 in normotensive men and women (P <0.01), and 0.004 (P = 0.88) and 0.15 (P <0.001) in hypertensive men and women, respectively. In median regression adjusted for BMI, insulin, smoking, alcohol consumption, menopausal status and HDL-cholesterol, there was a significant three-way interaction between SUA, SBP and sex for their effect on adiponectin (dependent variable, P = 0.005), as well as interactions between SBP and sex (P = 0.014) and between SUA and sex (P = 0.033). Conclusion: Plasma adiponectin and SUA are negatively associated, independently of BMI and insulin, in a population-based study in Caucasians. However, BP modifies this inverse relationship, as it was significant mainly in women with elevated BP. This observation suggests that the link between adiponectin and SUA may be mediated by sex hormones and the hypertension status.
Resumo:
Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.
Resumo:
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.
Resumo:
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Resumo:
Diabetes is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent low density lipoprotein (LDL) and high density lipoprotein (HDL) particles in insulin-secreting beta-cells. Purified human very low density lipoprotein (VLDL) and LDL particles reduced insulin mRNA levels and beta-cell proliferation and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of beta-cells involved caspase-3 cleavage and reduction in the levels of the c-Jun N-terminal kinase-interacting protein-1. In contrast, the proapoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of c-Jun N-terminal kinase. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of Akt/protein kinase B. In conclusion, human lipoproteins are critical regulators of beta-cell survival and may therefore contribute to the beta-cell dysfunction observed during the development of type 2 diabetes.
Resumo:
We have previously demonstrated that measurement of tissue concentration of the novel secretogranin II-derived peptide EM66 may help to discriminate between benign and malignant pheochromocytomas. The aim of the present study was to characterize EM66 in plasma and urine of healthy volunteers and pheochromocytoma patients, in order to further evaluate the usefulness of this peptide as a circulating marker for the management of the tumors. HPLC analysis of plasma and urine samples demonstrated that the EM66-immunoreactive material coeluted with the recombinant peptide. In healthy volunteers, plasma and urinary EM66 levels were, respectively, 2.6 (1.9-3.7) ng/ml and 2.9 (1.9-4.6) ng/ml. In patients with pheochromocytoma, plasma EM66 levels were 10-fold higher than those of healthy volunteers (26.9 (7.3-44) ng/ml), and returned to normal values after removal of the tumor. In contrast, urinary EM66 levels were not significantly different from those of healthy volunteers (3.2 (2.2-3.9) ng/ml). Measurement of total or free plasma metanephrines and 24 hr urinary metanephrines in our series of patients revealed that these tests, taken separately, are less sensitive than the EM66 determination. Pheochromocytes in primary culture secreted high levels of EM66, suggesting that the chromaffin tumor was actually responsible for the increased plasma peptide concentrations in the patients. These data indicate that EM66 is secreted in the general circulation and that elevated plasma EM66 levels are correlated with the occurrence of pheochromocytoma. Thus, EM66 is a sensitive plasma marker that should be considered as a complementary tool in the management of pheochromocytoma.
Resumo:
In the field of thrombosis and haemostasis, many preanalytical variables influence the results of coagulation assays and measures to limit potential results variations should be taken. To our knowledge, no paper describing the development and maintenance of a haemostasis biobank has been previously published. Our description of the biobank of the Swiss cohort of elderly patients with venous thromboembolism (SWITCO65+) is intended to facilitate the set-up of other biobanks in the field of thrombosis and haemostasis. SWITCO65+ is a multicentre cohort that prospectively enrolled consecutive patients aged ≥65 years with venous thromboembolism at nine Swiss hospitals from 09/2009 to 03/2012. Patients will be followed up until December 2013. The cohort includes a biobank with biological material from each participant taken at baseline and after 12 months of follow-up. Whole blood from all participants is assayed with a standard haematology panel, for which fresh samples are required. Two buffy coat vials, one PAXgene Blood RNA System tube and one EDTA-whole blood sample are also collected at baseline for RNA/DNA extraction. Blood samples are processed and vialed within 1 h of collection and transported in batches to a central laboratory where they are stored in ultra-low temperature archives. All analyses of the same type are performed in the same laboratory in batches. Using multiple core laboratories increased the speed of sample analyses and reduced storage time. After recruiting, processing and analyzing the blood of more than 1,000 patients, we determined that the adopted methods and technologies were fit-for-purpose and robust.
Resumo:
Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.
Resumo:
A. Costanza, K. Weber, S. Gandy, C. Bouras, P. R. Hof, P. Giannakopoulos and A. Canuto (2011) Neuropathology and Applied Neurobiology37, 570-584 Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum, signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology and pathogenesis of CTE and Alzheimer's disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neurone disease/amyotrophic lateral sclerosis (ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in-depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
Resumo:
Epithelial sodium channels (ENaC) are members of the degenerin/ENaC superfamily of non-voltage-gated, highly amiloride-sensitive cation channels that are composed of three subunits (alpha-, beta-, and gamma-ENaC). Since complete gene inactivation of the beta- and gamma-ENaC subunit genes (Scnn1b and Scnn1g) leads to early postnatal death, we generated conditional alleles and obtained mice harboring floxed and null alleles for both gene loci. Using quantitative RT-PCR analysis, we showed that the introduction of the loxP sites did not interfere with the mRNA transcript expression level of the Scnn1b and Scnn1g gene locus, respectively. Upon a regular and salt-deficient diet, both beta- and gamma-ENaC floxed mice showed no difference in their mRNA transcript expression levels, plasma electrolytes, and aldosterone concentrations as well as weight changes compared with control animals. These mice can now be utilized to dissect the role of ENaC function in classical and nonclassic target organs/tissues.
Resumo:
Cette thèse explore dans quelle mesure la poursuite d'un but de performance-approche (i.e., le désir de surpasser autrui et de démontrer ses compétences) favorise, ou au contraire endommage, la réussite et l'apprentissage-une question toujours largement débattue dans la littérature. Quatre études menées en laboratoire ont confirmé cette hypothèse et démontré que la poursuite du but de performance-approche amène les individus à diviser leur attention entre d'une part la réalisation de la tâche évaluée, et d'autre part la gestion de préoccupations liées à l'atteinte du but-ceci empêchant une concentration efficace sur les processus de résolution de la tâche. Dans une deuxième ligne de recherche, nous avons ensuite démontré que cette distraction est exacerbée chez les individus les plus performants et ayant le plus l'habitude de réussir, ceci dérivant d'une pression supplémentaire liée au souhait de maintenir le statut positif de « bon élève ». Enfin, notre troisième ligne de recherche a cherché à réconcilier ces résultats-pointant l'aspect distractif du but de performance-approche-avec le profil se dégageant des études longitudinales rapportées dans la littérature-associant ce but avec la réussite académique. Ainsi, nous avons mené une étude longitudinale testant si l'adoption du but de performance-approche en classe pourrait augmenter la mise en oeuvre de stratégies d'étude tactiquement dirigées vers la performance-favorisant une réussite optimale aux tests. Nos résultats ont apporté des éléments en faveur de cette hypothèse, mais uniquement chez les élèves de bas niveau. Ainsi, l'ensemble de nos résultats permet de mettre en lumière les processus cognitifs à l'oeuvre lors de la poursuite du but de performance-approche, ainsi que d'alimenter le débat concernant leur aspect bénéfique ou nuisible en contexte éducatif. -- In this dissertation, we propose to investigate whether the pursuit of performance-approach goals (i.e., the desire to outperform others and appear talented) facilitates or rather endangers achievement and learning-an issue that is still widely discussed in the achievement goal literature. Four experiments carried out in a laboratory setting have provided evidence that performance- approach goals create a divided-attention situation that leads cognitive resources to be divided between task processing and the activation of goal-attainment concerns-which jeopardizes full cognitive immersion in the task. Then, in a second research line, we found evidence that high- achievers (i.e., those individuals who are the most used to succeed) experience, under evaluative contexts, heightened pressure to excel at the task, deriving from concerns associated with the preservation of their "high-achiever" status. Finally, a third research line was designed to try to reconcile results stemming from our laboratory studies with the overall profile emerging from longitudinal research-which have consistently found performance-approach goals to be a positive predictor of students' test scores. We thus set up a longitudinal study so as to test whether students' adoption of performance-approach goals in a long-term classroom setting enhances the implementation of strategic study behaviors tactically directed toward goal-attainment, hence favoring test performance. Our findings brought support for this hypothesis, but only for low-achieving students. Taken together, our findings shed new light on the cognitive processes at play during the pursuit of performance-approach goals, and are likely to fuel the debate regarding whether performance-approach goals should be encouraged or not in educational settings.
Resumo:
Developmentally regulated mechanisms involving alternative RNA splicing and/or polyadenylation, as well as transcription termination, are implicated in controlling the levels of secreted mu (mu s), membrane mu (mu m) and delta immunoglobulin (Ig) heavy chain mRNAs during B cell differentiation (mu gene encodes the mu heavy chain). Using expression vectors constructed with genomic DNA segments composed of the mu m polyadenylation signal region, we analyzed poly(A) site utilization and termination of transcription in stably transfected myeloma cells and in murine fibroblast L cells. We found that the gene segment containing the mu m poly(A) signals, along with 536 bp of downstream flanking sequence, acted as a transcription terminator in both myeloma cells and L cell fibroblasts. Neither a 141-bp DNA fragment (which directed efficient polyadenylation at the mu m site), nor the 536-bp flanking nucleotide sequence alone, were sufficient to obtain a similar regulation. This shows that the mu m poly(A) region plays a central role in controlling developmentally regulated transcription termination by blocking downstream delta gene expression. Because this gene segment exhibited the same RNA processing and termination activities in fibroblasts, it appears that these processes are not tissue-specific.