143 resultados para Phenotypic Maturation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are conducted with the promise to discover novel genetic variants associated with diverse traits. For most traits, associated markers individually explain just a modest fraction of the phenotypic variation, but their number can well be in the hundreds. We developed a maximum likelihood method that allows us to infer the distribution of associated variants even when many of them were missed by chance. Compared to previous approaches, the novelty of our method is that it (a) does not require having an independent (unbiased) estimate of the effect sizes; (b) makes use of the complete distribution of P-values while allowing for the false discovery rate; (c) takes into account allelic heterogeneity and the SNP pruning strategy. We applied our method to the latest GWAS meta-analysis results of the GIANT consortium. It revealed that while the explained variance of genome-wide (GW) significant SNPs is around 1% for waist-hip ratio (WHR), the observed P-values provide evidence for the existence of variants explaining 10% (CI=[8.5-11.5%]) of the phenotypic variance in total. Similarly, the total explained variance likely to exist for height is estimated to be 29% (CI=[28-30%]), three times higher than what the observed GW significant SNPs give rise to. This methodology also enables us to predict the benefit of future GWA studies that aim to reveal more associated genetic markers via increased sample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice deficient in CCR7 signals show severe defects in lymphoid tissue architecture and immune response. These defects are due to impaired attraction of CCR7+ DC and CCR7+ T cells into the T zones of secondary lymphoid organs and altered DC maturation. It is currently unclear which CCR7 ligand mediates these processes in vivo as CCL19 and CCL21 show an overlapping expression pattern and blocking experiments have given contradictory results. In this study, we addressed this question using CCL19-deficient mice expressing various levels of CCL21. Complete deficiency of CCL19 and CCL21 but not CCL19 alone was found to be associated with abnormal frequencies and localization of DC in naïve LN. Similarly, CCL19 was not required for DC migration from the skin, full DC maturation and efficient T-cell priming. Our findings suggest that CCL21 is the critical CCR7 ligand regulating DC homeostasis and function in vivo with CCL19 being redundant for these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-induced insulin secretion is an essential function of pancreatic β-cells that is partially lost in individuals affected by Type 2 diabetes. This unique property of β-cells is acquired through a poorly understood postnatal maturation process involving major modifications in gene expression programs. Here we show that β-cell maturation is associated with changes in microRNA expression induced by the nutritional transition that occurs at weaning. When mimicked in newborn islet cells, modifications in the level of specific microRNAs result in a switch in the expression of metabolic enzymes and cause the acquisition of glucose-induced insulin release. Our data suggest microRNAs have a central role in postnatal β-cell maturation and in the determination of adult functional β-cell mass. A better understanding of the events governing β-cell maturation may help understand why some individuals are predisposed to developing diabetes and could lead to new strategies for the treatment of this common metabolic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-translational protein modifications are crucial for many fundamental cellular and extracellular processes and greatly contribute to the complexity of organisms. Human HCF-1 is a transcriptional co-regulator that undergoes complex protein maturation involving reversible and irreversible post-translational modifications. Upon synthesis as a large precursor protein, HCF-1 undergoes extensive reversible glycosylation with β-N-acetylglucosamine giving rise to O-linked-β-N-acetylglucosamine (O-GlcNAc) modified serines and threonines. HCF-1 also undergoes irreversible site-specific proteolysis, which is important for one of HCF-1's major functions - the regulation of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by a single enzyme with an unusual dual enzymatic activity, the O-GlcNAc transferase (OGT). HCF-1 is cleaved by OGT at any of six highly conserved 26 amino acid repeated sequences (HCF-1PRO repeats), but the mechanisms and the substrate requirements for OGT-mediated cleavage are not understood. In the present work, I characterized substrate requirements for OGT-mediated cleavage and O-GlcNAcylation of HCF-1. I identified key elements within the HCF-1PRO-repeat sequence that are important for proteolysis. Remarkably, an invariant single amino acid side-chain within the HCF-1PRO-repeat sequence displays particular OGT-binding properties and is essential for proteolysis. Additionally, I characterized substrate requirements for proteolysis outside of the HCF-1PRO repeat and identified a novel, highly O-GlcNAcylated OGT-binding sequence that enhances cleavage of the first HCF-1PRO repeat. These results link OGT association and its O-GlcNAcylation activities to HCF-1PRO-repeat proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SKI-l/SlP protease is a member of the proprotein convertase family, with several functions in cellular metabolism and homeostasis. It is responsible for the processing of several cellular substrates, including ATF6, SREBPs, and GlcNAc-1- phosphotranspherase. Furthermore, SKI-1/SlP is also responsible for maturation of arenavirus surface glycoprotein into GP1 and GP2 subunits. This processing is a strict requirement in order to achieve fully mature and fusion-competent virions. Furthermore, SKI-1/SlP itself is synthesized as an inactive zymogen, requiring sequential autocatalytic processing at several sites (B'/B and C) in its prodomain in order to mature and become fully active. Our project focused on the analysis of SKI- 1/S1P prodomain in the biogenesis of the active enzyme. In this context we have additionally developed and characterized a novel cell-based sensor for assessment of cellular activity of the enzyme, with a potential application in screening for novel SKI- 1/S1P inhibitors. In a first aim we have analysed the relevance of cleavage motifs found in the enzyme prodomain. Using molecular and biochemistry tools we have identified and characterized a novel C' maturation site. Furthermore, we found that SKI-1/SlP autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. Contrasting with other proprotein convertases, incompletely matured intermediates of SKI-1/SlP exhibit full catalytic activity toward selected substrates. In a second aim, we turned our attention to the structural basis of SKI-1/SlP N- terminus assisted folding. Studying the folding and activity of prodomain-truncated forms of the enzyme we found that a minimal folding unit is contained in the AB region. Deletion of the BC sequence affected auto-maturation but not folding, and partial activity was retained. However, the BC region seemed required for complete and full activity. Phylogenetic analyses showed that the AB sequence is highly conserved, while the BC fragment is variable in sequence and length. Specifically, replacement of the human prodomain with that of Drosophila, resulted in a fully mature and active chimeric enzyme, suggesting an evolution process of SKI-1/SlP prodomain towards a more complex arrangement and steps of activation. Overall, the additional data we have produced might provide fundamental knowledge crucial for the development of novel SKI-1/SlP inhibitors while also providing new SKI- 1/S1P variants with potential use in crystallization purpose. -- SKI-l/SlP est une protéase membre de la famille des proprotéines convertases (PCs), avec plusieurs fonctions dans le métabolisme cellulaire et de l'homéostasie. Il est responsable pour la maturation de plusieurs substrats cellulaires, y compris ATF6, SREBPs et GlcNAc-1-phosphotranspherase. SKI-l/SlP est également responsable pour la maturation de la glycoprotéine des arénavirus, une exigence stricte pour atteindre des virions infectieuse. Synthétisé comme un zymogène inactif, SKI-l/SlP nécessite d'un traitement autocatalytique séquentiel sur plusieurs sites (B'/B et C) de son prodomaine afin de devenir pleinement active. Notre projet était axé sur l'analyse de SKI-l/SlP prodomaine dans la biogenèse de l'enzyme. Dans ce contexte, nous avons développé un nouveau senseur-cellulaire pour l'évaluation de l'activité de l'enzyme. Ce dernier pourrait avoir une potentielle application dans l'identification de nouveaux inhibiteurs de SKI-l/SlP. Premièrement, nous avons analysé la pertinence des motifs de clivage trouvés dans le prodomaine de l'enzyme. En utilisant des outils moléculaires et biochimiques, nous avons identifié et caractérisé un nouveau site de maturation (C'). Aussi, nous avons constaté que la maturation de SKI-l/SlP a des intermédiaires dont le domaine catalytique reste associé à des fragments du prodomaine de différentes longueurs. Contrastant avec d'autres PCs, les intermédiaires partiellement matures de SKI-1 / SIP présentent une activité catalytique complète envers des substrats spécifiques. Dans un deuxième but nous avons tourné notre attention sur la base structurelle du pliage de SKI-l/SlP assisté par son N-terminus: En étudiant l'activité et pliage des formes tronquées dans le prodomaine de l'enzyme, nous avons constaté qu'une unité de pliage minimale est contenue dans la région de l'AB. La suppression de la séquence d'auto-BC affecte la maturation mais pas le pliage, et l'activité partielle est maintenue. Cependant, la région BC semble nécessaire pour une activité complète. Les analyses phylogénétiques ont montré que la séquence AB est fortement conservée, tandis que le fragment de BC est variable en longueur et en séquence. En particulier, le remplacement du prodomaine humain avec celui de la drosophile, a donné lieu à une enzyme chimérique complètement mature et active. Suggérant un processus d'évolution du prodomaine vers un arrangement et des mesures d'activation plus complexe. Globalement, ces donnees supplémentaires augment les connaissances fondamentales cruciales pour le développement de nouveaux inhibiteurs de SKI-1/ SIP, tout en offrant de nouvelles variantes SKI-1 / SIP dans le but d'obtenir la structure cristallographique de l'enzyme.