161 resultados para Parasite diversity
Resumo:
Infectious diseases, both in their endemic and epidemic forms, have shaped the human genome. Ecology has also contributed to geographically constrained pressures on human populations. There are now multiple examples of population-specific genetic variants that modulate susceptibility to infection - several of which have been observed solely in Europeans. The pathogen genome also mutates and adapts to individuals and common alleles in populations. The current understanding has benefited from genome-wide association studies as well as from rapid progress in the genetic characterization of Mendelian immunodeficiencies that are defined by susceptibility to specific pathogens. It is expected that current efforts to characterize rare human genetic variants will contribute to the understanding of severe manifestations of common infections in European and other human groups.
Resumo:
Non-target effects of biocontrol strains of Pseudomonas on the population of resident pseudomonads should be assessed prior to their large scale application in the environment. The rifampicin resistant bacterium P. fluorescens CHA0-Rif and its antibiotic overproducing derivative CHA0-Rif/pME3424 were introduced into soil microcosms and the population of resident pseudomonads colonizing cucumber roots was investigated after 10 and 52 days. Both CHA0-Rif and CHA0-Rif/pME3424 displaced a part of the resident pseudomonad population after 10 days. To investigate the population structure, utilization of 10 carbon sources and production of two exoenzymes was assessed for 5600 individual pseudomonad isolates and 1700 isolates were subjected to amplified ribosomal DNA restriction analysis of the spacer region (spacer-ARDRA). After 10 days, only the proportion of pseudomonads able to degrade -tryptophan was reduced in treatments inoculated with either biocontrol strain. In parallel the phenotypic diversity was reduced. These effects were only observed 10 days after inoculation, and they were similar for inoculation with CHA0-Rif and CHA0-Rif/pME3424. Changes in the population structure of resident pseudomonads on cucumber roots during plant growth were more pronounced than changes due to the inoculants. The inoculants did not affect the genotypic diversity detected with spacer-ARDRA, but the genotypic fingerprints corresponded only partially to the phenotypic profiles. Overall CHA0-Rif had a small and transient impact on the population of resident pseudomonads and the effect was essentially the same for the genetically engineered derivative CHA0-
Resumo:
Microbial communities in animal guts are composed of diverse, specialized bacterial species, but little is known about how gut bacteria diversify to produce genetically and ecologically distinct entities. The gut microbiota of the honey bee, Apis mellifera, presents a useful model, because it consists of a small number of characteristic bacterial species, each showing signs of diversification. Here, we used single-cell genomics to study the variation within two species of the bee gut microbiota: Gilliamella apicola and Snodgrassella alvi. For both species, our analyses revealed extensive variation in intraspecific divergence of protein-coding genes but uniformly high levels of 16S rRNA similarity. In both species, the divergence of 16S rRNA loci appears to have been curtailed by frequent recombination within populations, while other genomic regions have continuously diverged. Furthermore, gene repertoires differ markedly among strains in both species, implying distinct metabolic capabilities. Our results show that, despite minimal divergence at 16S rRNA genes, in situ diversification occurs within gut communities and generates bacterial lineages with distinct ecological niches. Therefore, important dimensions of microbial diversity are not evident from analyses of 16S rRNA, and single cell genomics has potential to elucidate processes of bacterial diversification.
Resumo:
Background. The time passed since the infection of a human immunodeficiency virus (HIV)-infected individual (the age of infection) is an important but often only poorly known quantity. We assessed whether the fraction of ambiguous nucleotides obtained from bulk sequencing as done for genotypic resistance testing can serve as a proxy of this parameter. Methods. We correlated the age of infection and the fraction of ambiguous nucleotides in partial pol sequences of HIV-1 sampled before initiation of antiretroviral therapy (ART). Three groups of Swiss HIV Cohort Study participants were analyzed, for whom the age of infection was estimated on the basis of Bayesian back calculation (n = 3,307), seroconversion (n = 366), or diagnoses of primary HIV infection (n = 130). In addition, we studied 124 patients for whom longitudinal genotypic resistance testing was performed while they were still ART-naive. Results. We found that the fraction of ambiguous nucleotides increased with the age of infection with a rate of .2% per year within the first 8 years but thereafter with a decreasing rate. We show that this pattern is consistent with population-genetic models for realistic parameters. Finally, we show that, in this highly representative population, a fraction of ambiguous nucleotides of >.5% provides strong evidence against a recent infection event < 1 year prior to sampling (negative predictive value, 98.7%). Conclusions. These findings show that the fraction of ambiguous nucleotides is a useful marker for the age of infection.
Resumo:
BACKGROUND AND AIMS: Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS: Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS: Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS: This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.
Resumo:
Abstract: To understand the processes of evolution, biologists are interested in the ability of a population to respond to natural or artificial selection. The amount of genetic variation is often viewed as the main factor allowing a species to answer to selection. Many theories have thus focused on the maintenance of genetic variability. Ecologists and population geneticists have long-suspected that the structure of the environment is connected to the maintenance of diversity. Theorists have shown that diversity can be permanently and stably maintained in temporal and spatial varying environment in certain conditions. Moreover, varying environments have been also theoretically demonstrated to cause the evolution of divergent life history strategies in the different niches constituting the environment. Although there is a huge number of theoretical studies selection and on life history evolution in heterogeneous environments, there is a clear lack of empirical studies. The purpose of this thesis was to. empirically study the evolutionary consequences of a heterogeneous environment in a freshwater snail Galba truncatula. Indeed, G. truncatula lives in two habitat types according the water availability. First, it can be found in streams or ponds which never completely dry out: a permanent habitat. Second, G. truncatula can be found in pools that freeze during winter and dry during summer: a temporary habitat. Using a common garden approach, we empirically demonstrated local adaptation of G. truncatula to temporary and permanent habitats. We used at first a comparison of molecular (FST) vs. quantitative (QST) genetic differentiation between temporary and permanent habitats. To confirm the pattern QST> FST between habitats suggesting local adaptation, we then tested the desiccation resistance of individuals from temporary and permanent habitats. This study confirmed that drought resistance seemed to be the main factor selected between habitats, and life history traits linked to the desiccation resistance were thus found divergent between habitats. However, despite this evidence of selection acting on mean values of traits between habitats, drift was suggested to be the main factor responsible of variation in variances-covariances between populations. At last, we found life history traits variation of individuals in a heterogeneous environment varying in parasite prevalence. This thesis empirically demonstrated the importance of heterogeneous environments in local adaptation and life history evolution and suggested that more experimental studies are needed to investigate this topic. Résumé: Les biologistes se sont depuis toujours intéressés en l'aptitude d'une population à répondre à la sélection naturelle. Cette réponse dépend de la quantité de variabilité génétique présente dans cette population. Plus particulièrement, les théoriciens se sont penchés sur la question du maintient de la variabilité génétique au sein d'environnements hétérogènes. Ils ont alors démontré que, sous certaines conditions, la diversité génétique peut se maintenir de manière stable et permanente dans des environnements variant au niveau spatial et temporel. De plus, ces environments variables ont été démontrés comme responsable de divergence de traits d'histoire de vie au sein des différentes niches constituant l'environnement. Cependant, malgré ce nombre important d'études théoriques portant sur la sélection et l'évolution des traits d'histoire de vie en environnement hétérogène, les études empiriques sont plus rares. Le but de cette thèse était donc d'étudier les conséquences évolutives d'un environnement hétérogène chez un esgarcot d'eau douce Galba truncatula. En effet, G. truncatula est trouvé dans deux types d'habitats qui diffèrent par leur niveau d'eau. Le premier, l'habitat temporaire, est constitué de flaques d'eau qui peuvent s'assécher pendant l'été et geler pendant l'hiver. Le second, l'habitat permanent, correspond à des marres ou à des ruisseaux qui ont un niveau d'eau constant durant toute l'année. Utilisant une approche expérimentale de type "jardin commun", nous avons démontré l'adaptation locale des individus à leur type d'habitat, permanent ou temporaire. Nous avons utilisé l'approche Fsr/QsT qui compare la différentiation génétique moléculaire avec la différentiation génétique quantitative entre les 2 habitats. Le phénomène d'adapation locale démontré par QsT > FsT, a été testé experimentalement en mesurant la résistance à la dessiccation d'individus d'habitat temporaire et permanent. Cette étude confirma que la résistance à la sécheresse a été sélectionné entre habitats et que les traits responsables de cette resistance sont différents entre habitats. Cependant si la sélection agit sur la valeur moyenne des traits entre habitats, la dérive génétique semble être le responsable majeur de la différence de variances-covariances entre populations. Pour finir, une variation de traits d'histoire de vie a été trouvée au sein d'un environnement hétérogène constitué de populations variants au niveau de leur taux de parasitisme. Pour conclure, cette thèse a donc démontré l'importance d'un environnement hétérogène sur l'adaptation locale et l'évolution des traits d'histoire de vie et suggère que plus d'études empiriques sur le sujet sont nécessaires.
Resumo:
Background: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities?Methodology/Principal Findings: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total gamma-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific gamma-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot beta-diversity) and (iv) number of species present per plot (plot gamma-diversity). We found strong region effects on total gamma-diversity, habitat-specific gamma-diversity and plot-to-plot beta-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot alpha-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots.Conclusions/Significance: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges,but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Because different processes can lead to a similar pattern, we discuss the consistency of our results with Quaternary history and other divergent features between the two regions such as habitat connectivity, selection for vagility and environmental differences not accounted for in our analyses
Resumo:
Mechanisms concerning life or death decisions in protozoan parasites are still imperfectly understood. Comparison with higher eukaryotes has led to the hypothesis that caspase-like enzymes could be involved in death pathways. This hypothesis was reinforced by the description of caspase-related sequences in the genome of several parasites, including Plasmodium, Trypanosoma and Leishmania. Although several teams are working to decipher the exact role of metacaspases in protozoan parasites, partial, conflicting or negative results have been obtained with respect to the relationship between protozoan metacaspases and cell death. The aim of this paper is to review current knowledge of protozoan parasite metacaspases within a drug targeting perspective.
Resumo:
The ability to distinguish nestmates from foreign individuals is central to the functioning of insect societies. In ants, workers from multiple-queen colonies are often less aggressive than workers from single-queen ones. In line with this observation, it has been hypothesized that workers from multiple-queen colonies have less precise recognition abilities than workers from single-queen ones because their colonies contain genetically more diverse individuals, which results in a broader template of recognition cues. Here, we assessed the impact of social structure ( queen number) variation on nestmate recognition and aggression in a large population of the socially polymorphic ant Formica selysi. We staged unilateral aggression tests on the nest surface. Workers from single-and multiple-queen colonies had good nestmate recognition ability and did not differ significantly in their level of aggression towards foreign, immobilized workers ( cue-bearers). In particular, workers from multiple-queen colonies efficiently recognized non-nestmates despite the higher genetic diversity in their colony. Cue-bearers from single- and multiple-queen colonies elicited similar reactions. However, the level of aggression was higher between than within social forms, suggesting that workers detect a signal that is specific to the colony social structure. Finally, the level of aggression was not correlated with the genetic distance between colonies. Overall, we found no evidence for the hypothesis that the presence of multiple breeders in the same colony decreases recognition abilities and found no simple relationship between genetic diversity and aggression level. (c) 2007 The Association for the Study of Animal Behaviou
Resumo:
The Economics of Urban Diversity explores ethnic and religious minorities in urban economies. In this exciting work, the contributors develop an integrative approach to urban diversity and economy by employing concepts from different studies and linking historical and contemporary analyses of economic, societal, demographic, and cultural development. Contributors from a variety of disciplines-geography, economics, history, sociology, anthropology, and planning-make for a transdisciplinary analysis of past and present migration-related economic and social issues, which helps to better understand the situation of ethnic and religious minorities in metropolitan areas today.
Resumo:
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.
Resumo:
Reference collections of multiple Drosophila lines with accumulating collections of "omics" data have proven especially valuable for the study of population genetics and complex trait genetics. Here we present a description of a resource collection of 84 strains of Drosophila melanogaster whose genome sequences were obtained after 12 generations of full-sib inbreeding. The initial rationale for this resource was to foster development of a systems biology platform for modeling metabolic regulation by the use of natural polymorphisms as perturbations. As reference lines, they are amenable to repeated phenotypic measurements, and already a large collection of metabolic traits have been assayed. Another key feature of these strains is their widespread geographic origin, coming from Beijing, Ithaca, Netherlands, Tasmania, and Zimbabwe. After obtaining 12.5× coverage of paired-end Illumina sequence reads, SNP and indel calls were made with the GATK platform. Thorough quality control was enabled by deep sequencing one line to >100×, and single-nucleotide polymorphisms and indels were validated using ddRAD-sequencing as an orthogonal platform. In addition, a series of preliminary population genetic tests were performed with these single-nucleotide polymorphism data for assessment of data quality. We found 83 segregating inversions among the lines, and as expected these were especially abundant in the African sample. We anticipate that this will make a useful addition to the set of reference D. melanogaster strains, thanks to its geographic structuring and unusually high level of genetic diversity.