139 resultados para Myocardial inotropism
Resumo:
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Resumo:
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.
Resumo:
Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.
Resumo:
AIMS: The aims of the study are to compare the outcome with and without major bleeding and to identify the independent correlates of major bleeding complications and mortality in patients described in the ATOLL study. METHODS: The ATOLL study included 910 patients randomly assigned to either 0.5 mg/kg intravenous enoxaparin or unfractionated heparin before primary percutaneous coronary intervention. Incidence of major bleeding and ischemic end points was assessed at 1 month, and mortality, at 1 and 6 months. Patients with and without major bleeding complication were compared. A multivariate model of bleeding complications at 1 month and mortality at 6 months was realized. Intention-to-treat and per-protocol analyses were performed. RESULTS: The most frequent bleeding site appears to be the gastrointestinal tract. Age >75 years, cardiac arrest, and the use of insulin or >1 heparin emerged as independent correlates of major bleeding at 1 month. Patients presenting with major bleeding had significantly higher rates of adverse ischemic complications. Mortality at 6 months was higher in bleeders. Major bleeding was found to be one of the independent correlates of 6-month mortality. The addition or mixing of several anticoagulant drugs was an independent factor of major bleeding despite the predominant use of radial access. CONCLUSIONS: This study shows that major bleeding is independently associated with poor outcome, increasing ischemic events, and mortality in primary percutaneous coronary intervention performed mostly with radial access.
Resumo:
BACKGROUND: Recently, it has been suggested that the type of stent used in primary percutaneous coronary interventions (pPCI) might impact upon the outcomes of patients with acute myocardial infarction (AMI). Indeed, drug-eluting stents (DES) reduce neointimal hyperplasia compared to bare-metal stents (BMS). Moreover, the later generation DES, due to its biocompatible polymer coatings and stent design, allows for greater deliverability, improved endothelial healing and therefore less restenosis and thrombus generation. However, data on the safety and performance of DES in large cohorts of AMI is still limited. AIM: To compare the early outcome of DES vs. BMS in AMI patients. METHODS: This was a prospective, multicentre analysis containing patients from 64 hospitals in Switzerland with AMI undergoing pPCI between 2005 and 2013. The primary endpoint was in-hospital all-cause death, whereas the secondary endpoint included a composite measure of major adverse cardiac and cerebrovascular events (MACCE) of death, reinfarction, and cerebrovascular event. RESULTS: Of 20,464 patients with a primary diagnosis of AMI and enrolled to the AMIS Plus registry, 15,026 were referred for pPCI and 13,442 received stent implantation. 10,094 patients were implanted with DES and 2,260 with BMS. The overall in-hospital mortality was significantly lower in patients with DES compared to those with BMS implantation (2.6% vs. 7.1%,p < 0.001). The overall in-hospital MACCE after DES was similarly lower compared to BMS (3.5% vs. 7.6%, p < 0.001). After adjusting for all confounding covariables, DES remained an independent predictor for lower in-hospital mortality (OR 0.51,95% CI 0.40-0.67, p < 0.001). Since groups differed as regards to baseline characteristics and pharmacological treatment, we performed a propensity score matching (PSM) to limit potential biases. Even after the PSM, DES implantation remained independently associated with a reduced risk of in-hospital mortality (adjusted OR 0.54, 95% CI 0.39-0.76, p < 0.001). CONCLUSIONS: In unselected patients from a nationwide, real-world cohort, we found DES, compared to BMS, was associated with lower in-hospital mortality and MACCE. The identification of optimal treatment strategies of patients with AMI needs further randomised evaluation; however, our findings suggest a potential benefit with DES.
Resumo:
BACKGROUND: The heart relies on continuous energy production and imbalances herein impair cardiac function directly. The tricarboxylic acid (TCA) cycle is the primary means of energy generation in the healthy myocardium, but direct noninvasive quantification of metabolic fluxes is challenging due to the low concentration of most metabolites. Hyperpolarized (13)C magnetic resonance spectroscopy (MRS) provides the opportunity to measure cellular metabolism in real time in vivo. The aim of this work was to noninvasively measure myocardial TCA cycle flux (VTCA) in vivo within a single minute. METHODS AND RESULTS: Hyperpolarized [1-(13)C]acetate was administered at different concentrations in healthy rats. (13)C incorporation into [1-(13)C]acetylcarnitine and the TCA cycle intermediate [5-(13)C]citrate was dynamically detected in vivo with a time resolution of 3s. Different kinetic models were established and evaluated to determine the metabolic fluxes by simultaneously fitting the evolution of the (13)C labeling in acetate, acetylcarnitine, and citrate. VTCA was estimated to be 6.7±1.7μmol·g(-1)·min(-1) (dry weight), and was best estimated with a model using only the labeling in citrate and acetylcarnitine, independent of the precursor. The TCA cycle rate was not linear with the citrate-to-acetate metabolite ratio, and could thus not be quantified using a ratiometric approach. The (13)C signal evolution of citrate, i.e. citrate formation was independent of the amount of injected acetate, while the (13)C signal evolution of acetylcarnitine revealed a dose dependency with the injected acetate. The (13)C labeling of citrate did not correlate to that of acetylcarnitine, leading to the hypothesis that acetylcarnitine formation is not an indication of mitochondrial TCA cycle activity in the heart. CONCLUSIONS: Hyperpolarized [1-(13)C]acetate is a metabolic probe independent of pyruvate dehydrogenase (PDH) activity. It allows the direct estimation of VTCA in vivo, which was shown to be neither dependent on the administered acetate dose nor on the (13)C labeling of acetylcarnitine. Dynamic (13)C MRS coupled to the injection of hyperpolarized [1-(13)C]acetate can enable the measurement of metabolic changes during impaired heart function.
Resumo:
BACKGROUND AND OBJECTIVES: Sudden cardiac death (SCD) is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF) or post myocardial infarction (MI). Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects. METHODS: We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs) assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia). RESULTS: Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03); all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001) and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001). In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03), 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003) and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003), respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002) for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001) for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001) for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly increased. CONCLUSION: Aldosterone antagonists appear to be effective in reducing SCD and other mortality events, compared with placebo or standard medication in patients with HF and/or after a MI.