133 resultados para Mitochondrial DNA replication
Resumo:
RÉSUMÉ: Le génome de toute cellule est susceptible d'être attaqué par des agents endogènes et exogènes. Afin de préserver l'intégrité génomique, les cellules ont développé des multitudes de mécanismes. La réplication de l'ADN, une étape importante durant le cycle cellulaire, constitue un stress et présente un danger important pour l'intégrité du génome. L'anémie de Fanconi est une maladie héréditaire rare dont les protéines impliquées semblent jouer un rôle crucial dans la réponse au stress réplicatif. La maladie est associée à une instabilité chromosomique ainsi qu'à une forte probabilité de développer des cancers. Les cellules des patients souffrant de l'anémie de Fanconi sont sensibles à des agents interférant avec la réplication de l'ADN, et plus particulièrement àdes agents qui fient les deux brins d'ADN d'une manière covalente. L'anémie de Fanconi est une maladie génétiquement hétérogène. Treize protéines ont pu être identifiées. Elles semblent figurer dans une même voie de signalisation qui est aussi connue sous le nom de « FA/BRCA pathway », car un des gènes est identique au gène BRCA2 (breast cancer susceptibility gene 2). Huit protéines forment un complexe nucléaire dont l'intégrité est nécessaire à la monoubiquitination de deux autres protéines, FANCD2 et FANCI, en réponse à un stress réplicatif. A ce jour, la fonction moléculaire des protéines du « FA/BRCA pathway »reste encore mal décrite. Au début de mon travail de thèse, nous avons donc décidé de purifier les protéines du complexe nucléaire et d'étudier leurs propriétés biochimiques. Nous avons tout d'abord étudié les cinq protéines connues à l'époque qui sont FANCA, FANCC, FANCE, FANCF et FANCG. Par la suite, nous avons étendu notre étude à des protéines découvertes plus récemment, FANCL, FANCM et FAAP24, en concentrant finalement notre travail sur la caractérisation de FANCM. FANCM, contrairement aux autres protéines du complexe, est constituée de deux domaines conservés suggérant un rôle important dans le métabolisme de l'ADN. Il s'agit d'un domaine « DEAH box hélicase »situé dans la partie N-terminale et d'un domaine « ERCC4 nuclease »situé dans la partie C-terminale de la protéine. Dans cette étude, nous avons purifié avec succès la protéine FANCM entière à partir d'un système hétérologue. Nous montrons que FANCM s'attache de manière spécifique à des jonctions de Holliday et des fourches de réplication. De plus, nous démontrons que FANCM peut déplacer le point de jonction de ces structures via son domaine hélicase de manière dépendante de l'ATP. FANCM est aussi capable de dissocier de grands intermédiaires de la recombinaison, via la migration de jonctions de Holliday à travers une région d'homologie de 2.6 kb. Tous ces résultats suggèrent que FANCM peut s'attacher spécifiquement à des fourches de réplication et à des jonctions de Holliday in vitro et que son domaine hélicase est associé à une activité migratoire efficace. Nous pensons que FANCM peut avoir un rôle direct sur les intermédiaires de réplication. Ceci est en accord avec l'idée que les protéines de l'anémie de Fanconi coordonnent la réparation de l'ADN au niveau des fourches de réplication arrêtées. Nos résultats donnent une première indication quant au rôle de FANCM dans la cellule et peuvent contribuer à élucider la fonction de cette voie de signalisation peu comprise jusqu'à présent. SUMMARY: The genome of every cell is subject to a constant offence by endogenous and exogenous agents. Not surprisingly; cells have evolved a multitude of mechanisms which aim at preserving genomic integrity. A key step during the life cycle of a cell, DNA replication itself, constitutes a special danger to the integrity of the genome. The proteins defective in the rare hereditary disease Fanconi anemia (FA) are suspected to play a crucial role in the cellular response to DNA replication stress. The disease is associated with chromosomal instability and pronounced cancer susceptibility. Cells from Fanconi anemia patients are sensitive to a variety of agents which interfere with DNA replication, DNA interstrand cross-linking agents being particularly threatening to their survival. Fanconi anemia is a genetically heterogeneous disease with 13 different proteins identified, which seem to work together in a common pathway. Since one of the FA genes is identical to the breast cancer susceptibility gene BRCA2, it is also referred to as the FA/BRCA pathway. Eight proteins form a nuclear complex, whose integriry is required for the monoubiquitination of two other FA proteins, FANCD2 and FANCI, in response to DNA replication stress. Despite intensive research, the function of the FA/BRCA pathway at a molecular level has remained largely elusive so far. At the beginning of my thesis, we therefore decided to purify the proteins of the FA core complex and to investigate their biochemical properties. We started with the five proteins which were known at that time, FANCA, FANCC, FANCE, FANCF, and FACG. Later on, we extended our studies to the newly discovered proteins FANCL, FANCM, and FAAP24, and eventually focused our work on the characterisation of FANCM. In contrast to the other core complex proteins, FANCM contains two conserved domains, which point to a role in DNA metabolism: an N-terminal DEAH box helicase domain and a C-terminal ERCC4 nuclease domain. In this study, we have successfully purified full-length FANCM from a recombinant source. We show that purified FANCM binds to branched DNA molecules, such as Holliday junctions and replication forks, with high specificity and affinity. In addition, we demonstrate that FANCM can translocate the junction point of branched DNA molecules due to its helicase domain in an ATPase-dependent manner. FANCM can even dissociate large recombination intermediates, via branch migration of Holliday junctions through a 2.6 kb region of homology. Taken together, our data suggest that FANCM can specifically bind to replication forks and Holliday junctions in vitro, and that its DEAH box helicase domain is associated with a potent branch migration activity. We propose that FANCM might have a direct role in the processing of DNA replication intermediates. This is consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks. Our findings provide a first hint as to the context in which FANCM might play a role in the cell. We are optimistic that they might be key to further elucidate the function of a pathway which is far from being understood.
Resumo:
Protein electrophoresis was used to assess the phylogenetic relationships of populations of the phenotypically variable Asian house shrew Suncus murinus. These populations represent a sample of both commensal and wild forms. They were compared to another taxon, S. montanus, which was formerly considered conspecific with S. murinus. Suncus dayi was used as an outgroup in all phylogenetic reconstructions. Within the S. murinus lineage, the allozyme data show very low levels of genetic differentiation among both wild and commensal Southeast Asian and Japanese samples when compared to the Indian populations. This pattern is consistent with the classical hypothesis of a recent introduction by man in Eastern Asia. The higher genetic diversity found within S. murinus from India, as well as previous mitochondrial and karyological results suggest that this area is the probable centre of origin for the species. Although the lack of gene flow between S. murinus and S. montanus is clearly established in an area of sympatry in Southern India, one Asian house shrew sampled in Nepal was more closely related to S. montanus. This could either reflect the retention of an ancestral polymorphism, or result from a hybridization episode between S. murinus and S. montanus. Similar conclusions were also suggested in mitochondrial DNA studies dealing with animals sampled in the Northern parts of the Indian subcontinent. Clearly, further data on Suncus from this area are needed in order to assess these hypotheses. (C) 1995 The Linnean Society of London
Resumo:
The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.
Resumo:
BACKGROUND: The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. RESULTS: Here we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition. CONCLUSION: Thus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.
Resumo:
Résumé -Caractéristiques architecturales des génomes bactériens et leurs applications Les bactéries possèdent généralement un seul chromosome circulaire. A chaque génération, ce chromosome est répliqué bidirectionnellement, par deux complexes enzymatiques de réplication se déplaçant en sens opposé depuis l'origine de réplication jusqu'au terminus, situé à l'opposé. Ce mode de réplication régit l'architecture du chromosome -l'orientation des gènes par rapport à la réplication, notamment - et est en grande partie à l'origine des pressions qui provoquent la variation de la composition en nucléotides du génome, hors des contraintes liées à la structure et à la fonction des protéines codées sur le chromosome. Le but de cette thèse est de contribuer à quantifier les effets de la réplication sur l'architecture chromosomique, en s'intéressant notamment aux gènes des ARN ribosomiques, cruciaux pour la bactérie. D'un autre côté, cette architecture est spécifique à l'espèce et donne ainsi une «identité génomique » aux gènes. Il est démontré ici qu'il est possible d'utiliser des marqueurs «naïfs » de cette identité pour détecter, notamment dans le génome du staphylocoque doré, des îlots de pathogénicité, qui concentrent un grand nombre de facteurs de virulence de la bactérie. Ces îlots de pathogénicité sont mobiles, et peuvent passer d'une bactérie à une autre, mais conservent durant un certain temps l'identité génomique de leur hôte précédent, ce qui permet de les reconnaître dans leur nouvel hôte. Ces méthodes simples, rapides et fiables seront de la plus haute importance lorsque le séquençage des génomes entiers sera rapide et disponible à très faible coût. Il sera alors possible d'analyser instantanément les déterminants pathogéniques et de résistance aux antibiotiques des agents pathogènes. Summary The bacterial genome is a highly organized structure, which may be referred to as the genome architecture, and is mainly directed by DNA replication. This thesis provides significant insights in the comprehension of the forces that shape bacterial chromosomes, different in each genome and contributing to confer them an identity. First, it shows the importance of the replication in directing the orientation of prokaryotic ribosomal RNAs, and how it shapes their nucleotide composition in a tax on-specific manner. Second, it highlights the pressure acting on the orientation of the genes in general, a majority of which are transcribed in the same direction as replication. Consequently, apparent infra-arm genome rearrangements, involving an exchange of the leading/lagging strands and shown to reduce growth rate, are very likely artifacts due to an incorrect contig assembly. Third, it shows that this genomic identity can be used to detect foreign parts in genomes, by establishing this identity for a given host and identifying the regions that deviate from it. This property is notably illustrated with Staphylococcus aureus: known pathogenicity islands and phages, and putative ancient pathogenicity islands concentrating many known pathogenicity-related genes are highlighted; the analysis also detects, incidentally, proteins responsible for the adhesion of S. aureus to the hosts' cells. In conclusion, the study of nucleotide composition of bacterial genomes provides the opportunity to better understand the genome-level pressures that shape DNA sequences, and to identify genes and regions potentially related to pathogenicity with fast, simple and reliable methods. This will be of crucial importance when whole-genome sequencing will be a rapid, inexpensive and routine tool.
Resumo:
The initiation of chromosomal replication must be tightly regulated so that the genome is replicated only once per cell cycle. In most bacteria, DnaA binds to the origin of replication and initiates chromosomal replication. DnaA is a dual-function protein that also acts as an important transcription factor that regulates the expression of many genes in bacteria. Thus, understanding how this protein is regulated during the bacterial cell cycle is of major importance. The α-proteobacterium Caulobacter crescentus is an excellent model to study the bacterial cell cycle, mainly because it is possible to isolate synchronized cell cultures and because it initiates the replication of its chromosome once per cell cycle and at a specific time of the cell cycle. This latest feature is of special interest for the major aim of my thesis work, which focused on the temporal and spatial regulation of the activity of the essential DnaA protein in C. crescentus. In Escherichia coli, the Hda protein converts ATP-DnaA into ADP- DnaA by stimulating the ATPase activity of DnaA, to prevent over-initiation of chromosome replication. We propose that there exists a similar mechanism in C. crescentus, which is not only involved in the temporal control of chromosome replication, but also in the control of gene expression. First, we provided evidences indicating that the hydrolysis of the ATP bound to DnaA is essential for the viability of C. crescentus. Our results suggest that ATP-DnaA promotes the initiation of chromosome replication, since we found that cells over-expressing a DnaA protein with a mutated ATPase domain, DnaA(R357A), over-initiated chromosome replication, unlike cells expressing the wild-type DnaA protein at similar levels. By contrast, the DnaA(R357A) protein was less active than DnaA in promoting the transcription of three essential genes, suggesting that these may be more efficiently activated by ADP-DnaA than ATP-DnaA. We propose that the ATP-DnaA to ADP-DnaA switch down-regulates the initiation of DNA replication while activating the transcription of several essential genes involved in subsequent cell cycle events. Second, we studied the role of the HdaA protein, homologous to Hda, in promoting the ATP- DnaA to ADP-DnaA switch in C. crescentus. HdaA is essential for viability and its depletion in the cell leads to an over-replication of the chromosome, indicating that HdaA is a negative regulator of DNA replication. HdaA dynamically co-localizes with the replisome. In this work, we identified DnaN, the β-clamp of the DNA polymerase, as the replisome component that interacts directly with HdaA and that recruits HdaA to the replisome in live C. crescentus cells. We also showed that a mutant HdaA protein that cannot interact or co-localize with DnaN is not functional, indicating that HdaA is probably activated by DnaN. However, we found that another non-functional HdaA protein, mutated in the conserved Arginine finger of its AAA+ domain, was able to localize at the replisome, suggesting that the AAA+ domain of HdaA exerts its essential function after the recruitment of HdaA to the replisome. We propose that HdaA stimulates the ATPase activity of DnaA once DNA replication is ongoing, via its interaction with DnaN and the activity of the two conserved R fingers of DnaA and HdaA. Finally, we created different strains in which HdaA, DnaN or DnaA were over-produced. We observed that the over-production of HdaA seems to lead to a delay in chromosome replication, while the over-production of DnaN had an opposite effect. Our results also indicate that the over-production of DnaA may intensify the over-initiation phenotype of cells depleted for HdaA. We conclude that the dynamic interplay of HdaA and DnaN in the cell contributes to regulating the ATP-DnaA/ADP-DnaA ratio in the cell, to ensure once per cell cycle initiation of chromosomal replication in C. crescentus. Altogether, our work provided important information on the regulation of the activity of DnaA in C. crescentus. Since DnaA, HdaA and DnaN are well-conserved proteins, most of our findings are useful to understand how chromosome replication and gene expression are controlled by DnaA in many other bacterial species. - L'initiation de la réplication des chromosomes doit être précisément régulée de telle sorte que le génome ne soit répliqué qu'une seule fois par cycle cellulaire. Chez la plupart des bactéries, DnaA se lie à l'origine de réplication du chromosome et en initie sa réplication. DnaA est aussi un facteur de transcription qui régule l'expression de nombreux gènes bactériens. De ce fait, il est très important de comprendre comment DnaA est régulée au cours du cycle cellulaire bactérien. L'a-protéobactérie Caulobacter crescentus est un excellent modèle pour étudier le cycle cellulaire bactérien, essentiellement parce qu'il est aisé d'isoler des populations de cellules synchronisées à la même étape du cycle cellulaire et parce que cette bactérie n'initie la réplication de son chromosome qu'une seule fois et à un moment précis de son cycle. Cette dernière caractéristique est particulièrement pertinente pour l'objectif de mon travail doctoral, qui consistait à comprendre comment l'activité de la protéine essentielle DnaA est régulée dans l'espace et dans le temps chez C. crescentus. Chez Escherichia coli, la protéine Hda convertie DnaA-ATP en DnaA-ADP en stimulant l'activité ATPasique de DnaA, ce qui empêche la sur-initiation de la réplication du chromosome. Nous proposons qu'un mécanisme similaire existe chez C. crescentus. Il serait non seulement nécessaire au contrôle de la réplication du chromosome, mais aussi au contrôle de l'expression de certains gènes. Dans un premier temps, nous avons mis en évidence le fait que l'hydrolyse de l'ATP lié à DnaA est un processus essentiel à la viabilité de C. crescentus. Nos résultats suggèrent que DnaA-ATP initie la réplication du chromosome, comme nous avons observé que des cellules qui sur-expriment une protéine DnaA(R357A) mutée sans domaine ATPasique fonctionnel, sur-initie la réplication de leur chromosome, contrairement aux cellules qui sur-expriment la protéine DnaA sauvage à des niveaux équivalents. Au contraire, la protéine DnaA(R357A) était moins active que la protéine DnaA sauvage pour promouvoir la transcription de trois gènes essentiels, ce qui suggère que ces derniers sont peut-être plus efficacement activés par DnaA-ADP que DnaA-ATP. Nous proposons que la conversion de DnaA-ATP en DnaA-ADP réprime l'initiation de la réplication, tandis qu'elle active la transcription de plusieurs gènes impliqués dans des étapes plus tardives du cycle cellulaire. Dans un deuxième temps, nous avons étudié le rôle de la protéine HdaA, homologue à Hda, dans la conversion de DnaA-ATP en DnaA-ADP chez C. crescentus. Cette protéine est essentielle à la viabilité de C. crescentus et sa déplétion donne des cellules qui sur-initient la réplication de leur chromosome, suggérant que HdaA est un répresseur de la réplication du chromosome. HdaA co-localise de manière dynamique avec le réplisome. Lors de mon travail doctoral, nous avons démontré que DnaN, le β-clamp de l'ADN polymérase, est l'élément qui recrute HdaA au réplisome in vivo. Nous avons aussi montré qu'une protéine HdaA mutante qui ne peut pas interagir ou co-localiser avec DnaN, n'est pas fonctionnelle, ce qui suggère que HdaA est activée par DnaN. Nous avons néanmoins aussi isolé une autre protéine HdaA non fonctionnelle, dont une arginine conservée de son domaine AAA+ était mutée, mais qui pouvait toujours co-localiser avec le réplisome, ce qui suggère que le domaine AAA+ de HdaA est nécessaire après le recrutement de HdaA au réplisome. Nous proposons que HdaA stimule l'activité ATPasique de DnaA qu'une fois que la réplication a commencé, grâce à son interaction avec DnaN et aux deux arginines conservées des protéines HdaA et DnaA. Finalement, nous avons construit différentes souches sur-exprimant HdaA, DnaN ou DnaA. Nous avons observé que la sur-production de HdaA retarde la réplication du chromosome, tandis que la sur-production de DnaN a un effet opposé. Nos observations suggèrent aussi que la sur-expression de DnaA dans des cellules déplétées pour HdaA aggrave leur phénotype de sur-initiation. Nous en concluons que HdaA et DnaN collaborent étroitement et de manière dynamique pour réguler le rapport DnaA-ATP/DnaA-ADP dans la cellule, pour s'assurer que la réplication du chromosome ne soit initiée qu'une seule fois par cycle cellulaire chez C. crescentus. Globalement, notre travail a mis en évidence des informations importantes sur la régulation de l'activité de DnaA chez C. crescentus. Comme DnaA, HdaA et DnaN sont des protéines très conservées, la plupart de nos découvertes sont utiles pour mieux comprendre comment la réplication du chromosome bactérien et l'expression des gènes sont contrôlées par DnaA chez de nombreuses autres espèces bactériennes.
Resumo:
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.
Resumo:
Abstract Activation of the Wnt pathway through mutation of the adenomatous polyposis coli and 13-catenin genes is a hallmark of colon cancer. These mutations lead to constitutive activation of transcription from promoters containing binding sites for Tcf/LEF transcription factors. Tumour-selective replicating oncolytic viruses are promising agents for cancer therapy. They can in principle spread throughout a tumour mass until all the cancerous cells are killed, and clinical trials have shown that they are safe except at very high doses. Adenoviruses are interesting candidates for virotherapy because their biology is well understood and their small genome can be rapidly mutated. Adenoviruses with Tcf binding sites in the E2 early promoter replicate selectively in cells with an active Wnt pathway. Although these viruses can replicate in a broad panel of colon cancer cell lines, some colorectal cancer cells are only semi-permissive for Tcf-virus replication. The aim of my thesis was to increase the safety and the efficacy of Tcf-viruses for colon cancer virotherapy. I replaced the endogenous ElA viral promoter by four Tcf binding sites and showed that transcription from the mutant promoter was specifically activated by the Wnt pathway. A virus with Tcf binding sites in the ElA and E4 promoters was more selective for the Wnt pathway than the former Tcf-E2 viruses. Moreover, insertion of Tcf binding sites into all early promoters further increased viral selectivity, but reduced viral activity. I showed that Tcf-dependent transcription was inhibited by the interaction between ElA and p300, but deletion of the p300-binding site of ElA generally led to viral attenuation. In the semi-permissive cell lines, replication of Tcf-viruses remained lower than that of the wild-type virus. The E2 promoter was the most sensitive to the cell type, but I was unable to improve its activity by targeted mutagenesis. To increase the toxicity of the Tcf-E1A/E4 virus, I decided to express a suicide gene, yeast cytosine deaminase (yCD), late during infection. This enzyme converts the prodrug 5-FC to the cytotoxic agent 5-FU. yCD was expressed in a DNA replication-dependent manner and increased viral toxicity in presence of 5-FC. Tcf-ElA and yCD adenoviruses are potentially useful vectors for the treatment of liver metastases from colorectal tumours. Résumé Dans la quasi-totalité des cancers du côlon, la voie Wnt est activée par des mutations dans les gènes codant pour APC ou pour la (3-caténine. Ces mutations activent de façon constitutive la transcription de promoteurs contenant des sites de liaison pour les facteurs de transcription Tcf/LEF. Les virus réplicatifs spécifiques aux tumeurs sont des agents prometteurs pour la thérapie cancéreuse. En principe, ces vecteurs peuvent se propager dans une masse tumorale jusqu'à destruction de toutes les cellules cancéreuses, et des études cliniques ont démontré que de tels vecteurs n'étaient pas toxiques, sauf à de très hautes doses. Les adénovirus sont des candidats intéressants pour la thérapie virale car leur biologie est bien définie et leur petit génome peut être rapidement modifié. Des adénovirus comportant des sites de liaison à Tcf dans leur promoteur précoce E2 se répliquent sélectivement dans les cellules qui possèdent une voie Wnt active. Ces virus sont capables de se répliquer dans un grand nombre de cellules cancéreuses du côlon, bien que certaines de ces cellules ne soient que semi-permissives pour la réplication des virus Tcf. Le but de ma thèse était d'augmenter la sécurité et l'efficacité des virus Tcf. Le promoteur viral endogène ElA a été remplacé par quatre sites de liaison à Tcf, ce qui a rendu son activation dépendante de la voie Wnt. Un virus comportant des sites de liaison pour Tcf dans les promoteurs ElA et E4 était plus sélectif pour la voie Wnt que les précédents virus Tcf-E2, et un virus comportant des sites Tcf dans tous les promoteurs précoces était encore plus sélectif, mais moins actif. J'ai montré que l'interaction entre ElA et p300 inhibait la transcription dépendante de Tcf, mais la délétion du domaine concerné dans ElA a eu pour effet d'atténuer les virus. Dans les cellules semi-permissives, la réplication des virus Tcf était toujours plus basse que celle du virus sauvage. J'ai identifié le promoteur E2 comme étant le plus sensible au type cellulaire, mais n'ai pas pu augmenter son activité par mutagenèse. Pour augmenter la toxicité du virus Tcf-E1A/E4, j'ai décidé d'exprimer un gène suicide, la cytosine déaminase (yCD), pendant la phase tardive de l'infection. Cette enzyme transforme la procirogue 5-FC en l'agent cytotoxique 5-FU. yCD était exprimée après réplication de l'ADN viral et augmentait la toxicité virale en présence de 5-FC. Les virus Tcf-ElA et yCD sont des vecteurs potentiellement utiles pour le traitement des métastases hépatiques de cancers colorectaux.
Resumo:
The knowledge of a species' population structure is essential for the development of adequate conservation actions as well as for the understanding of its evolution. The population structure is unknown in all species of the Genus Psammodromus, including the Western Sand Racer (Psammodromus occidentalis; a recently described species), the Edward's Sand Racer (P. edwardsianus) and the Spanish Sand Racer (P. hispanicus). In this article, the genetic variability and population structure of Psammodromus edwardsianus, P. hispanicus, and P. occidentalis were studied in the Iberian Peninsula covering their natural geographic distribution. Mitochondrial DNA showed genetically different units in all species with higher genetic variability in their southern populations (latitudinal variation). Genetic differentiation was different among species and contrasted to those of species with similar characteristics. Our results therefore highlight the importance of species-specific studies analysing population structure.
Resumo:
Hybridization by introduced taxa is a major threat to native species. Characterizing human introductions is thus one of the missions of conservation geneticists. Here we survey a declining population of the regionally endangered European tree frog (Hyla arborea) in the Grangettes natural reserve (Rhone valley, Western Switzerland), where previous evidence indicated human introduction of the Italian taxon H. intermedia. We combined fast-evolving mitochondrial and nuclear markers and an extended sampling to conduct population genetic analyses of the Grangettes and putative source areas. We show that the Grangettes population is a hybrid swarm, with all individuals featuring recent nuclear admixture and mitochondrial DNA of introduced H. intermedia, most likely of proximate south Alpine origin. In contrast, H. arborea and H. intermedia hardly introgress in their natural parapatric ranges, consistent with an advanced reproductive isolation. Thus, potential hybrid incompatibilities may account for the strong decline of this population, despite important conservation efforts. Although their hybrid nature makes them a priori unworthy of any protection, we propose specific measures to recover local H. arborea gene pool and preserve tree frogs in the Grangettes, the last population remaining from this heavily impacted part of the Alps.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.
Resumo:
NlmCategory="UNASSIGNED">Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions.
Resumo:
BACKGROUND: Many species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation. RESULTS: We tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages. CONCLUSIONS: Taken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.