227 resultados para MacDonald, Julie
Resumo:
Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.
Resumo:
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.
Resumo:
BACKGROUND: Stents are an alternative treatment to carotid endarterectomy for symptomatic carotid stenosis, but previous trials have not established equivalent safety and efficacy. We compared the safety of carotid artery stenting with that of carotid endarterectomy. METHODS: The International Carotid Stenting Study (ICSS) is a multicentre, international, randomised controlled trial with blinded adjudication of outcomes. Patients with recently symptomatic carotid artery stenosis were randomly assigned in a 1:1 ratio to receive carotid artery stenting or carotid endarterectomy. Randomisation was by telephone call or fax to a central computerised service and was stratified by centre with minimisation for sex, age, contralateral occlusion, and side of the randomised artery. Patients and investigators were not masked to treatment assignment. Patients were followed up by independent clinicians not directly involved in delivering the randomised treatment. The primary outcome measure of the trial is the 3-year rate of fatal or disabling stroke in any territory, which has not been analysed yet. The main outcome measure for the interim safety analysis was the 120-day rate of stroke, death, or procedural myocardial infarction. Analysis was by intention to treat (ITT). This study is registered, number ISRCTN25337470. FINDINGS: The trial enrolled 1713 patients (stenting group, n=855; endarterectomy group, n=858). Two patients in the stenting group and one in the endarterectomy group withdrew immediately after randomisation, and were not included in the ITT analysis. Between randomisation and 120 days, there were 34 (Kaplan-Meier estimate 4.0%) events of disabling stroke or death in the stenting group compared with 27 (3.2%) events in the endarterectomy group (hazard ratio [HR] 1.28, 95% CI 0.77-2.11). The incidence of stroke, death, or procedural myocardial infarction was 8.5% in the stenting group compared with 5.2% in the endarterectomy group (72 vs 44 events; HR 1.69, 1.16-2.45, p=0.006). Risks of any stroke (65 vs 35 events; HR 1.92, 1.27-2.89) and all-cause death (19 vs seven events; HR 2.76, 1.16-6.56) were higher in the stenting group than in the endarterectomy group. Three procedural myocardial infarctions were recorded in the stenting group, all of which were fatal, compared with four, all non-fatal, in the endarterectomy group. There was one event of cranial nerve palsy in the stenting group compared with 45 in the endarterectomy group. There were also fewer haematomas of any severity in the stenting group than in the endarterectomy group (31 vs 50 events; p=0.0197). INTERPRETATION: Completion of long-term follow-up is needed to establish the efficacy of carotid artery stenting compared with endarterectomy. In the meantime, carotid endarterectomy should remain the treatment of choice for patients suitable for surgery. FUNDING: Medical Research Council, the Stroke Association, Sanofi-Synthélabo, European Union.
Resumo:
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.
Resumo:
Recent experiments with mouse mammary tumor virus indicate that expression of a virally encoded superantigen by B cells and its subsequent recognition by T cells are essential steps for amplification of infection and virus transmission. Preliminary results suggest that superantigens may also be expressed during retroviral infection in humans.
Resumo:
Coordinated function of the innate and adaptive arms of the immune system in vertebrates is essential to promote protective immunity and to avoid immunopathology. The Notch signalling pathway, which was originally identified as a pleiotropic mediator of cell fate in invertebrates, has recently emerged as an important regulator of immune cell development and function. Notch was initially shown to be a key determinant of cell-lineage commitment in developing lymphocytes, but it is now known to control the homeostasis of several innate cell populations. Moreover, the roles of Notch in adaptive immunity have expanded to include the regulation of T cell differentiation and function. The aim of this Review is to summarize the current status of immune regulation by Notch. A better understanding of Notch function in both innate and adaptive immunity will hopefully provide multiple avenues for therapeutic intervention in disease.
Resumo:
Tolerance against superantigens (SAgs) encoded by endogenous mouse mammary tumor virus (Mtv) loci involves the intrathymic deletion of SAg-reactive T cells expressing a particular TCR V beta-chain, presumably upon presentation of the SAg by specialized APC. However, although the role of dendritic cells (DC) in the induction of tolerance against conventional Ags has been demonstrated, little is known about the role played by DC in tolerance induction against Mtv SAgs. Moreover, there is conflicting evidence concerning the capacity of DC to express and present Mtv SAgs. In this report we have analyzed the expression of Mtv SAgs in highly purified thymic and splenic DC and B cells by reverse transcriptase-PCR, using primers amplifying Mtv SAg-specific spliced mRNAs. DC express Mtv SAgs at levels comparable to B cells, but display a differential expression pattern of the various Mtv loci compared with B cells. Furthermore, our results show that DC are able to induce the deletion of SAg-reactive thymocytes in an in vitro assay, indicating that Mtv SAgs are functionally expressed on the DC surface. Collectively, our data are consistent with the hypothesis that DC play a role in the induction of intrathymic tolerance to Mtv SAgs.
Resumo:
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.
Resumo:
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo.
Resumo:
Autoreactive T lymphocytes are clonally deleted during maturation in the thymus. Deletion of T cells expressing particular receptor V beta elements is controlled by poorly defined autosomal dominant genes. A gene has now been identified by expression of transgenes in mice which causes deletion of V beta 14+ T cells. The gene lies in the open reading frame of the long terminal repeat of the mouse mammary tumour virus.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.