410 resultados para Long Accumulator
Resumo:
OBJECTIVE:: To determine the prevalence of cognitive complaints and HIV-associated neurocognitive disorders (HANDs) in a cohort of aviremic HIV-positive patients. To evaluate the relevance of the HIV dementia scale to detect HANDs. DESIGN:: Assessment of HANDs with neuropsychological tests. METHODS:: Two hundred HIV-infected patients with undetectable HIV-1 RNA concentrations in the plasma, no history of major opportunistic infection of the central nervous system in the past 3 years, no current use of intravenous drugs, and no major depression answered a questionnaire designed to elicit cognitive complaints. Cognitive functions of 50 complaining and 50 noncomplaining HIV-positive patients were assessed. RESULTS:: Patients had undetectable HIV-1 RNA concentrations for a median time of 48 months (range 3.2-136.6). The prevalence of cognitive complaints was 27%. The prevalence of HANDs was 84% among patients with cognitive complaints (asymptomatic neurocognitive impairment 24%, mild neurocognitive disorders 52%, and HIV-associated dementia 8%) and 64% among noncomplainers (asymptomatic neurocognitive impairment 60%, mild neurocognitive disorders 4%, and HIV-associated dementia 0%; P < 0.001). A score of 14 points or less on the HIV dementia scale yielded a positive predictive value of HANDs of 92% in complainers and 82% in noncomplainers. CONCLUSION:: The prevalence of HANDs is high even in long-standing aviremic HIV-positive patients. However, HANDs without functional repercussion in daily life (asymptomatic neurocognitive impairment) is the most frequent subtype observed. In this population, the HIV dementia scale with a cutoff of 14 points or less seems to provide a useful tool to screen for the presence of HANDs.
Resumo:
Pathogen inactivation of blood products represents a global and major paradigm shift in transfusion medicine. In the next near future, it is likely that most blood products will be inactivated by various physicochemical approaches. The concept of blood safety will be challenged as well as transfusion medicine practice, notably for donor selection or biological qualification. In this context, it seems mandatory to develop analytical economic approaches by assessing costs-benefits ratio of blood transfusion as well as to set up cohorts of patients based on hemovigilance networks allowing rigorous scientific analysis of the benefits and the risks of blood transfusion at short- and long-term.
Resumo:
Now that the acquired immunodeficiency syndrome (AIDS) epidemic is well into its second decade, it has become evident that a small percentage (approximately 5%) of HIV-infected individuals do not experience progression of HIV disease even after several years of being infected with HIV. These individuals have been designated as 'long term non-progressors' (LTNPs). From a virologic standpoint, these LTNPs have low viral burden in mononuclear cells, but persistent virus replication as manifested by chronic and generally low levels of plasma viremia. From an immunologic standpoint, immune functions including CD8(+) T-cell- and CD4(+) T-cell-mediated functions are preserved. In addition, they show a vigorous humoral immune response. More importantly, lymphoid tissue structure and function are preserved in LTNPs. Despite persistent low-level virus replication and chronic stimulation of the immune system, immune activation is qualitatively and quantitatively different in LTNPs compared to that observed in HIV-infected individuals whose HIV disease has progressed.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastro-intestinal stromal tumour (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occur in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after latest dose, were measured in 59 patients receiving Glivec® at diverse regimens, using a validated chromatographic method (HPLC-UV) developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one- compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T appears to affect the disposition of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen ! This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help to individualise the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
Intrinsic connections in the cat primary auditory field (AI) as revealed by injections of Phaseolus vulgaris leucoagglutinin (PHA-L) or biocytin, had an anisotropic and patchy distribution. Neurons, labelled retrogradely with PHA-L were concentrated along a dorsoventral stripe through the injection site and rostral to it; the spread of rostrally located neurons was greater after injections into regions of low rather than high characteristic frequencies. The intensity of retrograde labelling varied from weak and granular to very strong and Golgi-like. Out of 313 Golgi like retrogradely labelled neurons 79.6% were pyramidal, 17.2% multipolar, 2.6% bipolar, and 0.6% bitufted; 13.4% were putatively inhibitory, i.e. aspiny or sparsely spiny multipolar, or bitufted. Individual anterogradely labelled intrinsic axons were reconstructed for distances of 2 to 7 mm. Five main types were distinguished on the basis of the branching pattern and the location of synaptic specialisations. Type 1 axons travelled horizontally within layers II to VI and sent collaterals at regular intervals; boutons were only present in the terminal arborizations of these collaterals. Type 2 axons also travelled horizontally within layers II to VI and had rather short and thin collateral branches; boutons or spine-like protrusions occurred in most parts of the axon. Type 3 axons travelled obliquely through the cortex and formed a single terminal arborization, the only site where boutons were found. Type 4 axons travelled for some distance in layer I; they formed a heterogeneous group as to their collaterals and synaptic specializations. Type 5 axons travelled at the interface between layer VI and the white matter; boutons en passant, spine-like protrusions, and thin short branches with boutons en passant were frequent all along their trajectory. Thus, only some axonal types sustain the patchy pattern of intrinsic connectivity, whereas others are involved in a more diffuse connectivity.
Resumo:
Introduction: The beneficial effect of physical exercise on bone mineral density (BMD) is at least partly explained by the forces exerted directly on the bones. Male runners present generally higher BMD than sedentary individuals. We postulated that the proximal tibia BMD is related to the running distance as well as to the magnitude of the shocks (while running) in male runners. Methods: A prospective study (three yearly measurements) included 81 healthy male subjects: 16 sedentary lean subjects and three groups of runners (5-30 km/week, n=19; 30-50 km/week, n=29; 50-100 km/week, n=17). Several measurements were performed at the proximal tibia level: volumetric BMD (vBMD), cortical index (CI) i.e. an index of cortical bone thickness and peak accelerations (an index of shocks during heel strike) while running (measured by a 3-D accelerometer). A general linear model assessed the prediction of vBMD or CI by a) simple effects (running distance, peak accelerations, time) and b) interactions (for instance if vBMD prediction by peak acceleration depends on running distance). Results: CI and vBMD a) increase with running distance to reach a plateau over 30 km/wk, b) are positively associated with peak accelerations over 30 km/week. Discussion: Running may be associated with high peak accelerations in order to have beneficial effects on BMD. More important strains are needed to be associated with the same increase in BMD during running sessions of short duration than those of long duration. Conclusion: CI and vBMD are associated with the magnitude of the shocks during heel strike in runners. Key words: Bone mineral density, strains, physical exercise, running distance.
Resumo:
The leaves of all plants use elaborate and inducible defence systems to protect themselves. A wide variety of such defences are known and they include defence chemicals such as alkaloids, phenolics and terpenes, physical structures ranging from fibre cells to silica deposits, and a wide variety of defence proteins many of which target digestive processes in herbivores. It has long been known that the defence responses of plants under attack by insects are not restricted to the site of attack. Instead, if a leaf is damaged, defence can be triggered in other parts of the plant body, for example in distal leaves or even in roots and flowers. This raises the question of what are the organ-to-organ signals that coordinate this process. Several hypotheses have been proposed. These include the long-distance transfer of chemical signals through the plant vasculature, hydraulic signals that may transit through the xylem, and electrical signals that would move through living tissues such as the phloem. Much evidence for each of these scenarios has been published. In this thesis we took advantage of the fact that many plant defence responses are regulated by a signal transduction pathway based on a molecule called jasmonic acid. We used this molecule, one of its derivatives (jasmonoyl-isoleucine), and some of the genes it regulates as markers. Using these we investigated the possible role of the electrical signals in the leaf- to-leaf activation of the jasmonate pathway. We found that feeding insects stimulate easily detected electrical activity in the leaves of Arabidopsis thaliana and we used non-invasive surface electrodes to record this activity. This approach showed that jasmonate pathway activity and the electrical activity provoked by mechanical wounding occurred within identical spatial boundaries. Measurements of the apparent speed of surface potentials agreed well with previous velocity estimates for the speed of leaf-to-leaf signals that activate the jasmonate pathway. Using this knowledge we were able to investigate the effects of current injection into Arabidopsis leaves. This resulted in the strong expression of many jasmonate-regulated genes. All these results showed that electrical activity and the activation of jasmonate signalling were highly correlated. In order to test for possible causal links between the two processes, we conducted a small-scale reverse genetic screen on a series of T-DNA insertion mutants in ion channel genes and in other genes encoding proteins such as proton pumps. This screen, which was based on surface potential measurements, revealed that mutations in genes related to ionotropic glutamate receptors in animals had impaired electrical activity after wounding. Combining mutation of two of these glutamate-receptor-like genes in a double mutant reduced the response of leaves to current injection. When a leaf of this double mutant was wounded it failed to transmit a long-distance signal to a distal leaf. This result distinguished the double mutant from the wild-type plant and provides the first genetic evidence that electrical signalling is necessary to coordinate defence responses between organs in plants. - Les feuilles des plantes disposent de systèmes de défense inductibles très élaborés. Un grand nombre de ces systèmes de défenses sont connus et sont basés sur des composés chimiques comme les alcaloïdes, les composés phénoliques ou les terpènes, des systèmes physiques allant de la production de cellules fibreuses aux cristaux de silice ainsi qu'un grand nombre de protéines de défense ciblant le processus digestif des herbivores. Il est connu dépuis longtemps que la réponse défensive de la plante face à l'attaque pas un insecte n'est pas seulement localisée au niveau de la zone d'attaque. A la place, si une feuille est attaquée, les systèmes de défense peuvent être activés ailleurs dans la plante, comme par exemple dans d'autres feuilles, les racines ou même les fleurs. Ces observations soulèvent la question de la nature des signaux d'organes à organes qui régulent ces systèmes. Plusieurs hypothèses ont été formulées; une ou plusieures molécules pourraient être véhiculées dans la plante grâce au système vasculaire, un signal hydraulique transmis au travers du xylème ou encore des signaux électriques transmis par les cellules comme dans le phloème par exemple. De nombreuses études ont été publiées sur ces différentes hypothèses. Dans ce travail de thèse, nous avons choisi d'utiliser à notre avantage le fait que de nombreuses réponses de défense de la plante sont régulées par une même voie de signalisation utilisant l'acide jasmonique. Nous avons utilisé comme marqueurs cette molécule, un de ses dérivés (le jasmonoyl-isoleucine) ainsi que certains des gènes que l'acide jasmonique régule. Nous avons alors testé l'implication de la transmission de signaux électriques dans l'activation de la voie du jasmonate de feuille à feuille. Nous avons découvert que les insectes qui se nourrissent de feuilles d'Arabidopsis thaliana activent un signal électrique que nous avons pu mesurer grâce à une technique non invasive d'électrodes de surface. Les enregistrements ont montré que la génération de signaux électriques et l'activation de la voie du jasmonate avaient lieu aux mêmes endroits. La mesure de la vitesse de déplacement des impulsions électriques correspond aux estimations faites concernant l'activation de la voie du jasmonate. Grâce à cela, nous avons pu tester l'effet d'injection de courant électrique dans les feuilles d'Arabidopsis. La conséquence a été une forte expression de nombreux gènes de la voie du jasmonate, suggérant une forte corrélation entre l'activité électrique et l'activation de la voie du jasmonate. Afin de tester le lien de cause entre ces deux phénomènes, nous avons entrepris un criblage génétique sur une série de mutants d'insertion à l'ADN-T dans des gènes de canaux ioniques et d'autres gènes d'intérêt comme les gènes des pompes à protons. Ce criblage, basé sur la mesure de potentiels de surface, a permis de montrer que plusieurs mutations de gènes liés aux récepteurs au glutamate ionotropique présentent une baisse drastique de leurs activités électriques après une blessure mécanique des feuilles par rapport au type sauvage. Par la combinaison de deux mutations de ces récepteurs au glutamate en un double mutant, on obtient une réponse à la stimulation électrique encore plus faible. Quand une feuille du double mutant est blessée, elle est incapable de transmettre un signal à longue distance vers une feuille éloignée. Ce résultat permet de distinguer le double mutant de la plante sauvage et amène la première preuve génétique que l'activité électrique est nécessaire pour coordonner les réponses de défense entre les organes chez les plantes.
Resumo:
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.
Resumo:
We present the long-term results of 18 chemotherapy relapsed indolent (N = 12) or transformed (N = 6) NHL patients of a phase II anti-CD20 (131)I-tositumomab (Bexxar) therapy study. The biphasic therapy included two injections of 450 mg unlabelled antibody combined with (131)I-tositumomab once as dosimetric and once as therapeutic activity delivering 75 or 65 cGy whole-body radiation dose to patients with normal or reduced platelet counts, respectively. Two patients were not treated due to disease progression during dosimetry. The overall response rate was 81% in the 16 patients treated, including 50% CR/CRu and 31% PR. Median progression free survival of the 16 patients was 22.5 months. Median overall survival has not been reached after a median observation of 48 months. Median PFS of complete responders (CR/CRu) has not been reached and will be greater than 51 months. Short-term side effects were mainly haematological and transient. Among the relevant long-term side effects, one patient previously treated with CHOP chemotherapy died from secondary myelodysplasia. Four patients developed HAMA. In conclusion, (131)I-tositumomab RIT demonstrated durable responses especially in those patients who achieved a complete response. Six of eight CR/CRu are ongoing after 46-70 months.
Resumo:
Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
AIM: To evaluate the long-term safety and effectiveness of lopinavir/ritonavir (LPV/r) in a population-based cohort of HIV-1-infected children. METHODS: All children enrolled in the Swiss Mother and Child HIV Cohort Study, treated with LPV/r-based combination antiretroviral treatment (cART) between November 2000 and October 2008, were included. RESULTS: 88 children (25 (28%) protease inhibitor (PI)-naive, 16 (18%) ART-naive) were analysed (251 patient-years on LPV/r). After 48 weeks on LPV/r, 70 children had a median (interquartile range (IQR)) decrease in HIV-1 viral load of 4.25 log (5.45-3.17; PI-naive, n=17) and 2.53 (3.68-1.38; PI-experienced, n=53). Median (IQR) increase in CD4 count was 429 (203-593; PI-naive) and 177 (21-331; PI-experienced) cells/microl. These effects remained stable throughout 192 weeks for 25 children. Treatment was stopped for viral rebound in seven and suspected toxicity in 12 children. CONCLUSION: Long-term treatment with LPV/r-based cART is safe and effective in HIV-1-infected children.
Resumo:
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Resumo:
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.