176 resultados para Histoplasmose mucosa
Resumo:
A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.
Resumo:
BACKGROUND & AIMS: Protective immunization limits Helicobacter infection of mice by undetermined mechanisms. Protease-activated receptor 2 (PAR2) signaling is believed to regulate immune and inflammatory responses. We investigated the role of PAR2 in vaccine-induced immunity against Helicobacter infection. METHODS: Immune responses against Helicobacter infection were compared between vaccinated PAR2(-/-) and wild-type (WT) mice. Bacterial persistence, gastric pathology, and inflammatory and cellular responses were assessed using the rapid urease test (RUT), histologic analyses, quantitative polymerase chain reaction, and flow cytometry, respectively. RESULTS: Following vaccination, PAR2(-/-) mice did not have reductions in Helicobacter felis infection (RUT values were 0.01 ± 0.01 for WT mice and 0.11 ± 0.13 for PAR2(-/-) mice; P < .05). The vaccinated PAR2(-/-) mice had reduced inflammation-induced stomach tissue damage (tissue damage scores were 8.83 ± 1.47 for WT mice and 4.86 ± 1.35 for PAR2(-/-) mice; P < .002) and reduced T-helper (Th)17 responses, based on reduced urease-induced interleukin (IL)-17 secretion by stomach mononuclear cells (5182 ± 1265 pg/mL for WT mice and 350 ± 436 pg/mL for PAR2(-/-) mice; P < .03) and reduced recruitment of CD4(+) IL-17(+) T cells into the gastric mucosa of PAR2(-/-) mice following bacterial challenge (3.7% ± 1.5% for WT mice and 2.6% ± 1.1% for PAR2(-/-) mice; P < .05). In vitro, H felis-stimulated dendritic cells (DCs) from WT mice induced greater secretion of IL-17 by ovalbumin-stimulated OT-II transgenic CD4(+) T cells compared with DCs from PAR2(-/-) mice (4298 ± 347 and 3230 ± 779; P < .04), indicating that PAR2(-/-) DCs are impaired in priming of Th17 cells. Adoptive transfer of PAR2(+/+) DCs into vaccinated PAR2(-/-) mice increased vaccine-induced protection (RUT values were 0.11 ± 0.10 and 0.26 ± 0.15 for injected and noninjected mice, respectively; P < .03). CONCLUSIONS: PAR2 activates DCs to mediate vaccine-induced protection against Helicobacter infection in mice.
Resumo:
The prognosis of superficial bladder cancer in terms of recurrence and disease progression is related to bladder tumor multiplicity and the presence of concomitant "plane" tumors such as high-grade dysplasia and carcinoma in situ. This study in 33 patients aimed to demonstrate the role of fluorescence cystoscopy in transurethral resection of superficial bladder cancer. The method is based on the detection of protoporphyrin-IX-induced fluorescence in urothelial cancer cells by topical administration of 5-aminolevulinic acid. The sensitivity and the specificity of this procedure on apparently normal mucosa in superficial bladder cancer are estimated to be 82.9% and 81.3%, respectively. Thus, fluorescence cytoscopy is a simple and reliable method for mapping the bladder mucosa, especially in the case of multifocal bladder disease, and it facilitates the screening of occult dysplasia.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
Background and Objectives: Precursor lesions of oesophagus adenocarcinoma constitute a clinical dilemma. Photodynamic therapy (PDT) is an effective treatment for this indication, but it is difficult to optimise without an appropriate animal model. For this reason, we assessed the sheep model for PDT in the oesophagus with the photosensitiser meta-(tetra-hydroxyphenyl) chlorin (mTHPC). Materials and Methods: Twelve sheep underwent intravenous mTHPC injection, blood sampling and fluorescence measurements. mTHPC's pharmacokinetics was measured in vivo and in plasma by fluorescence spectroscopy. Biopsies of sheep oesophagus were compared to corresponding human tissue, and the mTHPC's biodistribution was studied under fluorescence microscopy. Finally, the sheep oesophageal mucosa was irradiated, 4 days after mTHPC's injection. Results: Histologically, the sheep and human oesophagus were closely comparable, with the exception of additional fatty tissue in the sheep oesophagus. mTHPC's pharmacokinetics in sheep and human plasmas were similar, with a maximum of concentration in the sheep 10 hours after i.v. injection. mTHPC's pharmacokinetics in vivo reached its maximum after 30-50 hours, then decreased to background levels, as in humans under similar conditions. Two days after injection, mTHPC was mainly distributed in the lamina propria, followed by a penetration into the epithelium. The sheep and human tissue sensitivity to mTHPC PDT was similar. Conclusion: In conclusion, this model showed many similarities with humans as to mTHPC's plasma and tissue pharmacokinetics, and for tissue PDT response, making it suitable to optimise oesophagus PDT. Lasers Surg. Med. 41:643-652,2009. (C) 2009Wiley-Liss,Inc.
Resumo:
BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.
Resumo:
BACKGROUND: Since the introduction of the endoscopic endonasal approaches in the field of skull base surgery during the last two decades, several variants of the sella turcica endoscopic surgery have been described. The aim of this study is to provide a stepwise description of one of these variants in a minimally invasive/maximally efficient perspective. METHOD: For the majority of our sella turcica pathologies, we have progressively adopted a uninostril endoscopic approach that is very conservative towards the nasal mucosa with a very limited mucosal incision, resection of the vomer and allowing an almost ad integrum sellar floor reconstruction, without compromising the efficacy and completeness of both surgical oncologic and endocrine targets. CONCLUSION: The uninostril trans-sphenoidal endoscopic endonasal approach to sella turcica is tailored to ally maximal efficiency and minimal invasiveness.
Resumo:
Tenascins are extracellular matrix proteins present during the development of organisms as well as in pathological conditions. Tenascin-W, the fourth and last member of the tenascin family remains the least well-characterized one. Our study aimed to evaluate the potential significance of tenascin-W as cancer biomarker by monitoring its presence in the serum of colorectal and breast cancer patients and its expression in colorectal tumor tissues. To measure serum tenascin-W levels, a sensitive sandwich-ELISA was established. Mean tenascin-W concentration in sera of patients with nonmetastatic colorectal cancer at time of diagnosis was highly increased compared to that of healthy volunteers. A similar tendency was observed for tenascin-C in the same patient cohort. However, the increase was much more striking for tenascin-W. We also detected elevated tenascin-W levels in sera of breast cancer patients. Furthermore, we could show a prominent expression of tenascin-W in extracts from colorectal tumor tissues by immunoblot analysis, whereas tenascin-W was not detectable in the corresponding normal colon mucosa. To confirm the western blot results, we performed immunohistochemistry of frozen sections of the same patients as well as of an additional, independently chosen collection of colorectal cancer tissues. In all cases, similarly to tenascin-C, tenascin-W was detected in the tumor stroma. Our results reveal a clear association between elevated levels of tenascin-W and the presence of cancer. These results warrant further studies to evaluate the potential value of serum and tissue tenascin-W levels as diagnostic, prognostic or monitoring biomarker in colorectal, breast and possibly other solid cancers.
Resumo:
BACKGROUND & AIMS: Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. This study explores the possibility that interleukin (IL)-17 plays a role in the reduction of Helicobacter infection following vaccination of wild-type animals or in spontaneous reduction of bacterial infection in IL-10-deficient mice. METHODS: In mice, reducing Helicobacter infection, the levels and source of IL-17 were determined and the role of IL-17 in reduction of Helicobacter infection was probed by neutralizing antibodies. RESULTS: Gastric IL-17 levels were strongly increased in mice mucosally immunized with urease plus cholera toxin and challenged with Helicobacter felis as compared with controls (654 +/- 455 and 34 +/- 84 relative units for IL-17 messenger RNA expression [P < .01] and 6.9 +/- 8.4 and 0.02 +/- 0.04 pg for IL-17 protein concentration [P < .01], respectively). Flow cytometry analysis showed that a peak of CD4(+)IL-17(+) T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice (4.7% +/- 0.3% and 1.4% +/- 0.3% [P < .01], respectively). Gastric mucosa-infiltrating CD4(+)IL-17(+) T cells were also observed in IL-10-deficient mice that spontaneously reduced H felis infection (4.3% +/- 2.3% and 2% +/- 0.6% [P < .01], for infected and noninfected IL-10-deficient mice, respectively). In wild-type immunized mice, intraperitoneal injection of anti-IL-17 antibodies significantly inhibited inflammation and the reduction of Helicobacter infection in comparison with control antibodies (1 of 12 mice vs 9 of 12 mice reduced Helicobacter infection [P < .01], respectively). CONCLUSIONS: IL-17 plays a critical role in the immunization-induced reduction of Helicobacter infection from the gastric mucosa.
Resumo:
Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.
Resumo:
The binding specificities of 52 well-characterized monoclonal antibodies (Mabs) against carcinoembryonic antigen (CEA) from 12 different research groups were studied by immunohistochemistry and immuno flow cytometry. In addition, the binding constant for the interaction between Mab and CEA was determined by a solution-phase assay. Cryostat sections of colon carcinoma and normal colon, stomach, liver, pancreas, and spleen were studied by immunohistochemistry. Peripheral blood granulocytes, monocytes, and lymphocytes were assayed by immuno flow cytometry. The Mabs used here have previously been classified into five essentially nonoverlapping epitope groups (GOLD 1-5) (Cancer Res., 49: 4852-4858, 1989). Most Mabs cross-reacted with different normal tissues, ranging from highly cross-reactive Mabs (positive reaction with 8 of 9 discriminating tissues) to relatively specific Mabs (positive reaction with 1 of 9 discriminating tissues). Five Mabs (10%) were specific, reacting only with colon carcinoma, normal colon mucosa, and normal gastric foveola. There was a correlation between epitope group and binding specificity. Mabs with a high degree of CEA specificity almost exclusively belonged to epitope groups 1, 2, and 3, while highly cross-reactive Mabs belonged to epitope groups 4 and 5. There was no correlation between antibody specificity and affinity for CEA. Specific Mabs with high as well as low affinity were found.
Resumo:
The rate of nasal carriage of Staphylococcus aureus and associated risk factors were determined in a cross-sectional study involving Swiss children's hospitals. S. aureus was isolated in 562 of 1363 cases. In a stepwise multivariate analysis, the variables age, duration of antibiotic use, and hospitalization of a household member were independently associated with carriage of S. aureus.