132 resultados para High-fat diets
Resumo:
Purpose: Recent studies showed that pericardial fat was independently correlated with the development of coronary artery disease (CAD). The mechanism remains unclear. We aimed at assessing a possible relationship between pericardial fat volume and endothelium-dependent coronary vasomotion, a surrogate of future cardiovascular events.Methods: Fifty healthy volunteers without known CAD or cardiovascular risk factors (CRF) were enrolled. They all underwent a dynamic Rb- 82 cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, during MBF response to cold pressure test (CPT-MBF) and adenosine stress. Pericardial fat volume (PFV) was measured using a 3D volumetric CT method and common biological CRF (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hs-CRP). Relationships between MBF response to CPT, PFV and other CRF were assessed using non-parametric Spearman correlation and multivariate regression analysis of variables with significant correlation on univariate analysis (Stata 11.0).Results: All of the 50 participants had normal MBF response to adenosine (2.7±0.6 mL/min/g; 95%CI: 2.6−2.9) and myocardial flow reserve (2.8±0.8; 95%CI: 2.6−3.0) excluding underlying CAD. Simple regression analysis revealed a significant correlation between absolute CPTMBF and triglyceride level (rho = −0.32, p = 0.024) fasting blood insulin (rho = −0.43, p = 0.0024), HOMA-IR (rho = −0.39, p = 0.007) and PFV (rho = −0.52, p = 0.0001). MBF response to adenosine was only correlated with PFV (rho = −0.32, p = 0.026). On multivariate regression analysis PFV emerged as the only significant predictor of MBF response to CPT (p = 0.002).Conclusion: PFV is significantly correlated with endothelium-dependent coronary vasomotion. High PF burden might negatively influence MBF response to CPT, as well as to adenosine stress, even in persons with normal hyperemic myocardial perfusion imaging, suggesting a link between PF and future cardiovascular events. While outside-to-inside adipokines secretion through the arterial wall has been described, our results might suggest an effect upon NO-dependent and -independent vasodilatation. Further studies are needed to elucidate this mechanism.
Resumo:
Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption ([Formula: see text]) 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were -2±27% of [Formula: see text] with SIN, -4±32 with P3 and -4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24-49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5-12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.
Resumo:
Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.
Resumo:
BACKGROUND AND AIMS: There is little information regarding the effect of different definitions of obesity on nutritional epidemiology. The aim was thus to assess: (a) the values of percentage of body fat (%BF) by gender and age; (b) the prevalence of obesity according to different %BF cut-offs; and (c) the sensitivity and specificity of BMI according to different %BF cut-offs used to define obesity. METHODS: Cross-sectional study on 2494 boys and 2519 girls aged 1018 years from the Lisbon area. %BF was measured using a hand-held device. In a sub sample of 211 boys and 724 girls %BF was assessed using skin folds. RESULTS: %BF levels were higher in girls and decreased with age in both genders. Prevalence of obesity varied considerably according to the %BF cut-off used: in boys, it ranged from 4.7% (age-specific 95th percentile) to 26.5% (fixed 25% cut-off), whereas by BMI it was 5.3%. In girls, prevalence of obesity ranged from 0.4% (age-specific BMI-derived %BF values) to 25.4% (fixed 30% cut-off), whereas by BMI it was 4.7%. The specificity of BMI criteria was over 95% irrespective of the %BF cut-off used; conversely, most sensitivities were below 40%. Sensitivities over 50% were obtained for the age-specific BMI-derived %BF values in boys and the age-specific 95th %BF percentile in both genders. Using %BF derived from the skin fold measurements leads to similar results. CONCLUSIONS: Prevalence of obesity varies considerably according to the %BF cut-off used. BMI cut-offs have a low sensitivity but a high specificity. Age- and gender-specific cut-offs for %BF should be used to define pediatric obesity.
Resumo:
OBJECTIVE: Body mass index does not discriminate body fat from fat-free mass or determine changes in these parameters with physical activity and aging. Body fat mass index (BFMI) and fat-free mass index (FFMI) permit comparisons of subjects with different heights. This study evaluated differences in body mass index, BFMI, and FFMI in physically active and sedentary subjects younger and older than 60 y and determined the association between physical activity, age, and body composition parameters in a healthy white population between ages 18 and 98 y. METHODS: Body fat and fat-free mass were determined in healthy white men (n = 3549) and women (n = 3184), between ages 18 and 98 y, by bioelectrical impedance analysis. BFMI and FFMI (kg/m2) were calculated. Physical activity was defined as at least 3 h/wk of endurance-type activity for at least 2 mo. RESULTS: Physically active as opposed to sedentary subjects were more likely to have a low BFMI (men: odds ratio [OR], 1.4; confidence interval [CI], 0.7-2.5; women: OR 1.9, CI 1.6-2.2) and less likely to have very high BFMI (men: OR, 0.2; CI, 0.1-0.2; women: OR, 0.1; CI, 0.02-0.2), low FFMI (men: OR, 0.5; CI, 0.3-0.9; women: OR, 0.7; CI, 0.6-0.9), or very high FFMI (men: OR, 0.6; CI, 0.4-0.8; women: OR, 0.7; CI, 0.5-1.0). Compared with subjects younger than 60 y, those older than 60 y were more like to have very high BFMI (men: OR, 6.5; CI, 4.5-9.3; women: OR, 14.0; CI, 9.6-20.5), and women 60 y and older were less likely to have a low BFMI (OR, 0.4; CI, 0.2-0.5). CONCLUSIONS: A clear association was found between low physical activity or age and height-normalized body composition parameters (BFMI and FFMI) derived from bioelectrical impedance analysis. Physically active subjects were more likely to have high or very high or low FFMI. Older subjects had higher body weights and BFMI.
Resumo:
AIMS: More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. METHODS AND RESULTS: Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. CONCLUSION: Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.
Resumo:
Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.
Resumo:
OBJECTIVE: To test the hypothesis that substituting artificially sweetened beverages (ASB) for sugar-sweetened beverages (SSB) decreases intrahepatocellular lipid concentrations (IHCL) in overweight subjects with high SSB consumption. METHODS: About 31 healthy subjects with BMI greater than 25 kg/m(2) and a daily consumption of at least 660 ml SSB were randomized to a 12-week intervention in which they replaced SSBs with ASBs. Their IHCL (magnetic resonance spectroscopy), visceral adipose tissue volume (VAT; magnetic resonance imaging), food intake (2-day food records), and fasting blood concentrations of metabolic markers were measured after a 4-week run-in period and after a 12-week period with ASB or control (CTRL). RESULTS: About 27 subjects completed the study. IHCL was reduced to 74% of the initial values with ASB (N = 14; P < 0.05) but did not change with CTRL. The decrease in IHCL attained with ASB was more important in subjects with IHCL greater than 60 mmol/l than in subjects with low IHCL. ALT decreased significantly with SSB only in subjects with IHCL greater than 60 mmol/l. There was otherwise no significant effect of ASB on body weight, VAT, or metabolic markers. CONCLUSIONS: In subjects with overweight or obesity and a high SSB intake, replacing SSB with ASB decreased intrahepatic fat over a 12-week period.
Resumo:
PURPOSE: Thoracic fat has been associated with an increased risk of coronary artery disease (CAD). As endothelium-dependent vasoreactivity is a surrogate of cardiovascular events and is impaired early in atherosclerosis, we aimed at assessing the possible relationship between thoracic fat volume (TFV) and endothelium-dependent coronary vasomotion. METHODS: Fifty healthy volunteers without known CAD or major cardiovascular risk factors (CRFs) prospectively underwent a (82)Rb cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, and MBF response to cold pressor testing (CPT-MBF) and adenosine (i.e., stress-MBF). TFV was measured by a 2D volumetric CT method and common laboratory blood tests (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hsCRP) were performed. Relationships between CPT-MBF, TFV and other CRFs were assessed using non-parametric Spearman rank correlation testing and multivariate linear regression analysis. RESULTS: All of the 50 participants (58 ± 10y) had normal stress-MBF (2.7 ± 0.6 mL/min/g; 95 % CI: 2.6-2.9) and myocardial flow reserve (2.8 ± 0.8; 95 % CI: 2.6-3.0) excluding underlying CAD. Univariate analysis revealed a significant inverse relation between absolute CPT-MBF and sex (ρ = -0.47, p = 0.0006), triglyceride (ρ = -0.32, p = 0.024) and insulin levels (ρ = -0.43, p = 0.0024), HOMA-IR (ρ = -0.39, p = 0.007), BMI (ρ = -0.51, p = 0.0002) and TFV (ρ = -0.52, p = 0.0001). MBF response to adenosine was also correlated with TFV (ρ = -0.32, p = 0.026). On multivariate analysis, TFV emerged as the only significant predictor of MBF response to CPT (p = 0.014). CONCLUSIONS: TFV is significantly correlated with endothelium-dependent and -independent coronary vasomotion. High TF burden might negatively influence MBF response to CPT and to adenosine stress, even in persons without CAD, suggesting a link between thoracic fat and future cardiovascular events.