159 resultados para Hibernating Myocardium
Resumo:
To investigate the functional role of different alpha1-adrenergic receptor (alpha1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the alpha1b-AR (alpha1b-/-). Reverse transcription-PCR and ligand binding studies were combined to elucidate the expression of the alpha1-AR subtypes in various tissues of alpha1b +/+ and -/- mice. Total alpha1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the alpha1b -/- as compared with +/+ mice. Because of the large decrease of alpha1-AR in the heart and the loss of the alpha1b-AR mRNA in the aorta of the alpha1b-/- mice, the in vivo blood pressure and in vitro aorta contractile responses to alpha1-agonists were investigated in alpha1b +/+ and -/- mice. Our findings provide strong evidence that the alpha1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by alpha1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in alpha1b -/- as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in alpha1b-/- mice. The alpha1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different alpha1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.
Resumo:
Weakening of cardiac function in patients with heart failure results from a loss of cardiomyocytes in the damaged heart. Cell replacement therapies as a way to induce myocardial regeneration in humans could represent attractive alternatives to classical drug-based approaches. However, a suitable source of precursor cells, which could produce a functional myocardium after transplantation, remains to be identified. In the present study, we isolated cardiovascular precursor cells from ventricles of human fetal hearts at 12 weeks of gestation. These cells expressed Nkx2.5 but not late cardiac markers such as α-actinin and troponin I. In addition, proliferating cells expressed the mesenchymal stem cell markers CD73, CD90, and CD105. Evidence for functional cardiogenic differentiation in vitro was demonstrated by the upregulation of cardiac gene expression as well as the appearance of cells with organized sarcomeric structures. Importantly, differentiated cells presented spontaneous and triggered calcium signals. Differentiation into smooth muscle cells was also detected. In contrast, precursor cells did not produce endothelial cells. The engraftment and differentiation capacity of green fluorescent protein (GFP)-labeled cardiac precursor cells were then tested in vivo after transfer into the heart of immunodeficient severe combined immunodeficient mice. Engrafted human cells were readily detected in the mouse myocardium. These cells retained their cardiac commitment and differentiated into α-actinin-positive cardiomyocytes. Expression of connexin-43 at the interface between GFP-labeled and endogenous cardiomyocytes indicated that precursor-derived cells connected to the mouse myocardium. Together, these results suggest that human ventricular nonmyocyte cells isolated from fetal hearts represent a suitable source of precursors for cell replacement therapies.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.
Resumo:
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.
Resumo:
Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.
Resumo:
PURPOSE: To compare volume-targeted and whole-heart coronary magnetic resonance angiography (MRA) after the administration of an intravascular contrast agent. MATERIALS AND METHODS: Six healthy adult subjects underwent a navigator-gated and -corrected (NAV) free breathing volume-targeted cardiac-triggered inversion recovery (IR) 3D steady-state free precession (SSFP) coronary MRA sequence (t-CMRA) (spatial resolution = 1 x 1 x 3 mm(3)) and high spatial resolution IR 3D SSFP whole-heart coronary MRA (WH-CMRA) (spatial resolution = 1 x 1 x 2 mm(3)) after the administration of an intravascular contrast agent B-22956. Subjective and objective image quality parameters including maximal visible vessel length, vessel sharpness, and visibility of coronary side branches were evaluated for both t-CMRA and WH-CMRA. RESULTS: No significant differences (P = NS) in image quality were observed between contrast-enhanced t-CMRA and WH-CMRA. However, using an intravascular contrast agent, significantly longer vessel segments were measured on WH-CMRA vs. t-CMRA (right coronary artery [RCA] 13.5 +/- 0.7 cm vs. 12.5 +/- 0.2 cm; P < 0.05; and left circumflex coronary artery [LCX] 11.9 +/- 2.2 cm vs. 6.9 +/- 2.4 cm; P < 0.05). Significantly more side branches (13.3 +/- 1.2 vs. 8.7 +/- 1.2; P < 0.05) were visible for the left anterior descending coronary artery (LAD) on WH-CMRA vs. t-CMRA. Scanning time and navigator efficiency were similar for both techniques (t-CMRA: 6.05 min; 49% vs. WH-CMRA: 5.51 min; 54%, both P = NS). CONCLUSION: Both WH-CMRA and t-CMRA using SSFP are useful techniques for coronary MRA after the injection of an intravascular blood-pool agent. However, the vessel conspicuity for high spatial resolution WH-CMRA is not inferior to t-CMRA, while visible vessel length and the number of visible smaller-diameter vessels and side-branches are improved.
Resumo:
BACKGROUND: Chronic endoplasmic reticulum (ER) stress contributes to the apoptotic cell death in the myocardium, thereby playing a critical role in the development of cardiomyopathy. ER stress has been reported to be induced after high-fat diet feeding in mice and also after saturated fatty acid treatment in vitro. Therefore, since several studies have shown that peroxisome proliferator-activated receptor (PPAR)β/δ inhibits ER stress, the main goal of this study consisted in investigating whether activation of this nuclear receptor was able to prevent lipid-induced ER stress in cardiac cells. METHODS AND RESULTS: Wild-type and transgenic mice with reduced PPARβ/δ expression were fed a standard diet or a high-fat diet for two months. For in vitro studies, a cardiomyocyte cell line of human origin, AC16, was treated with palmitate and the PPARβ/δ agonist GW501516. Our results demonstrate that palmitate induced ER stress in AC16 cells, a fact which was prevented after PPARβ/δ activation with GW501516. Interestingly, the effect of GW501516 on ER stress occurred in an AMPK-independent manner. The most striking result of this study is that GW501516 treatment also upregulated the protein levels of beclin 1 and LC3II, two well-known markers of autophagy. In accordance with this, feeding on a high-fat diet or suppression of PPARβ/δ in knockout mice induced ER stress in the heart. Moreover, PPARβ/δ knockout mice also displayed a reduction in autophagic markers. CONCLUSION: Our data indicate that PPARβ/δ activation might be useful to prevent the harmful effects of ER stress induced by saturated fatty acids in the heart by inducing autophagy.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a nuclear receptor that is mainly expressed in tissues with a high degree of fatty acid oxidation such as liver, heart, and skeletal muscle. Unsaturated fatty acids, their derivatives, and fibrates activate PPARalpha. Male rats are more responsive to fibrates than female rats. We therefore wanted to investigate if there is a sex difference in PPARalpha expression. Male rats had higher levels of hepatic PPARalpha mRNA and protein than female rats. Fasting increased hepatic PPARalpha mRNA levels to a similar degree in both sexes. Gonadectomy of male rats decreased PPARalpha mRNA expression to similar levels as in intact and gonadectomized female rats. Hypophysectomy increased hepatic PPARalpha mRNA and protein levels. The increase in PPARalpha mRNA after hypophysectomy was more pronounced in females than in males. GH treatment decreased PPARalpha mRNA and protein levels, but the sex-differentiated secretory pattern of GH does not determine the sex-differentiated expression of PPARalpha. The expression of PPARalpha mRNA in heart or soleus muscle was not influenced by gender, gonadectomy, hypophysectomy, or GH treatment. In summary, pituitary-dependent hormones specifically regulate hepatic PPARalpha expression. Sex hormones regulate the sex difference in hepatic PPARalpha levels, but not via the sexually dimorphic GH secretory pattern.
Resumo:
The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.
Resumo:
PURPOSE: A new magnetic resonance imaging approach for detection of myocardial late enhancement during free-breathing was developed. METHODS AND RESULTS: For suppression of respiratory motion artifacts, a prospective navigator technology including real-time motion correction and a local navigator restore was implemented. Subject specific inversion times were defined from images with incrementally increased inversion times acquired during a single dynamic scout navigator-gated and real-time motion corrected free-breathing scan. Subsequently, MR-imaging of myocardial late enhancement was performed with navigator-gated and real-time motion corrected adjacent short axis and long axis (two, three and four chamber) views. This alternative approach was investigated in 7 patients with history of myocardial infarction 12 min after i. v. administration of 0.2 mmol/kg body weight gadolinium-DTPA. CONCLUSION: With the presented navigator-gated and real-time motion corrected sequence for MR-imaging of myocardial late enhancement data can be completely acquired during free-breathing. Time constraints of a breath-hold technique are abolished and optimized patient specific inversion time is ensured.
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.
Resumo:
The aim of our work was to show how a chosen normal-isation strategy can affect the outcome of quantitative gene expression studies. As an example, we analysed the expression of three genes known to be upregulated under hypoxic conditions: HIF1A, VEGF and SLC2A1 (GLUT1). Raw RT-qPCR data were normalised using two different strategies: a straightforward normalisation against a single reference gene, GAPDH, using the 2(-ΔΔCt) algorithm and a more complex normalisation against a normalisation factor calculated from the quantitative raw data from four previously validated reference genes. We found that the two different normalisation strategies revealed contradicting results: normalising against a validated set of reference genes revealed an upregulation of the three genes of interest in three post-mortem tissue samples (cardiac muscle, skeletal muscle and brain) under hypoxic conditions. Interestingly, we found a statistically significant difference in the relative transcript abundance of VEGF in cardiac muscle between donors who died of asphyxia versus donors who died from cardiac death. Normalisation against GAPDH alone revealed no upregulation but, in some instances, a downregulation of the genes of interest. To further analyse this discrepancy, the stability of all reference genes used were reassessed and the very low expression stability of GAPDH was found to originate from the co-regulation of this gene under hypoxic conditions. We concluded that GAPDH is not a suitable reference gene for the quantitative analysis of gene expression in hypoxia and that validation of reference genes is a crucial step for generating biologically meaningful data.
Resumo:
OBJECTIVE: The objective of this study was to investigate the effects of chronic and intermittent hypoxia on myocardial morphology. METHODS: Rats randomly divided into 3 groups (n = 14 per group) were exposed to room air (Fio(2) = 0.21), chronic hypoxia (Fio(2) = 0.10), and intermittent hypoxia (chronic hypoxia with 1 hour per day of room air) for 2 weeks. Weight, blood gas analysis, hematocrit, hemoglobin, red cells, and right and left ventricular pressures were measured. Hearts excised for morphologic examination were randomly divided into 2 groups (9 per group for gross morphologic measurements and 5 per group for histologic and morphometric analysis). The weight ratio of right to left ventricles plus interventricular septum, myocyte diameter, cross-sectional area, and free wall thickness in right and left ventricles were measured. RESULTS: Despite the same polycythemia, the right ventricle pressure (P <.05) and ratio of right to left ventricle pressures (P <.02) were higher after chronic hypoxia than intermittent hypoxia. The ratio of heart weight to total body weight and the ratio of right to left ventricles plus interventricular septum was higher (P <.01) in chronic and intermittent hypoxia than in normoxia. Myocyte diameter was not different between the right and left ventricles in normoxia, whereas right ventricle myocytes were larger than left ventricle myocytes in chronic hypoxia (P <.05) and intermittent hypoxia (P <.0005). There was marked dilatation of right ventricle size (P <.001) and marked reduction of left ventricle (P <.001) size in chronic and intermittent hypoxia compared with normoxia. The total ventricular area (right ventricle plus left ventricle area) remained the same in all groups. The wall thickness ratio in chronic hypoxia and intermittent hypoxia was increased (P <.001) compared with normoxia in the right ventricle but not in the left ventricle. CONCLUSIONS: Intermittent reoxygenation episodes do not induce a lesser ventricular hypertrophic response than observed with chronic hypoxia. The functional myocardial preconditioning consequence of intermittent reoxygenation is not supported by structural differences evident with the available techniques.
Resumo:
Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.
Resumo:
Une lésion fonctionnelle ou structurale des artérioles intramurales influence le seuil ischémique du myocarde. Le diagnostic de dysfonction microvasculaire est retenu en présence d'une diminution du flux coronaire maximal et de coronaires angio-graphiquement normales ou presque normales. Un trouble de la microcirculation peut traduire une dysfonction endothéliale chez le sujet diabétique ou hyperlipidémique, ou une lésion structurale ou fonctionnelle dans le cadre de la cardiomyopathie hypertrophique, la sténose aortique ou l'hypertension artérielle. Après recanalisation de l'artère responsable d'un infarctus, la mesure de la fonction microcirculatoire permet d'estimer la qualité de la reperfusion myocardique. L'appréciation de la fonction microvasculaire est un enjeu majeur dans l'évaluation de l'ischémie du myocarde en l'absence de sténose coronaire. Functional or structural lesions in intramural arterioles influence the ischemic threshold of the myocardium. Microvascular dysfonction is evidenced by a decrease in coronary blood flow during maximum hyperemia in the presence of angiographically normal or near-normal coronary arteries. Microvascular dysfonction may reflect endothelial dysfonction in diabetic or hyperlipidemic patients, as well as structural and functional changes in patients with hypertrophic cardiomyopathy, aortic stenosis or hypertension. Assessing microvascular fonction after thrombolysis or primary angioplasty for acute myocardial infarction allows to estimate the quality of myocardial reperfusion. Assessing microvascular fonction is a major component of the evaluation of myocardial ischemia in the absence of coronary artery stenoses.