170 resultados para Gradient Field Distortions
Resumo:
In the European GLORIA project, 12 summits (treeline to nival belt) were inventoried in three regions of Switzerland: two in the Swiss National Park Graubünden and one in Valais. Vascular plants were recorded in all three regions and bryophytes and lichens were recorded only in Valais. On each summit, vegetation and temperature data were sampled using sampling protocols for the GLORIA project (Global Observation Research Initiative in Alpine environment) on large summit sections and in clusters of four 1x1-m quadrats. We observed a general decrease of species richness for all three systematic groups with increasing elevation in the summit sections, but only for vascular plants in the quadrats. In Valais, there was higher species richness for vascular plants than for bryophytes and lichens on the lower summits, but as the decrease in species richness was less pronounced for cryptogams, the latter were more numerous than vascular plants on the highest summit. Vascular species showed a clear shift of the dominant life form with elevation, with chamaephytes replacing hemicryptophytes. Bryophytes and lichens showed a weak trend among the life forms at the summit section scale, but a stronger shift of the dominant forms was seen in the quadrats, with cushion replacing turf bryophytes and crustaceous replacing fruticose lichens. Altogether, these results sustain the temperature-physiographic hypothesis to explain the species richness decrease along the altitudinal gradient: the harsh climatic conditions of the alpine-nival belts act as a filter for species, but the diminishing diversity of microhabitats is also an important factor. Because cryptogams depend more on humidity than temperature and more on smaller microhabitats than vascular plants, the decrease of species richness is more gradual with elevation for bryophytes and lichens.
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
An extensive study of the central part of the Sesia Lanzo Zone has been undertaken to identify pre-Alpine protoliths and to reconstruct the lithologic and tectonic setting of this part of the Western Alps. Three main complexes have been defined: 1) the Polymetamorphic Basement Complex, corresponding to the lower unit of the Sesia Lanzo Zone after COMPAGNONI et al. (1977), is further subdivided into the three following units: a) an Internal Unit characterized by eo-Alpine high pressure (HP) assemblages (DAL PIAZ et al., 1972) (Eclogitic Micaschists); b) an Intermediate Unit where HP parageneses are partially re-equilibrated under greenschist conditions and c) an External Unit where the main foliation is defined by a greenschist paragenesis (Gneiss Minuti auct.). 2) the Monometamorphic Cover Complex, subdivided into the followings: a) the Bonze Unit, composed of sheared metagabbros, eclogitized metabasalts with MORB geochemical affinity and related metasediments (micaschists, quartzites and Mn-cherts) and b) the Scalaro Unit, containing predominantly metasediments of supposed Permo-Triassic age (yellow dolomitic marbles, calcschists and conglomeratic limestones, micaschists and quartzites with thin levels of basic rocks with within plate basalts [WPB] geochimical affinity). Multiple lithostratigraphic sequences for the Monometamorphic Cover Complex are proposed. The contact between the Bonze and Scalaro Units is defined by repetitions of dolomitic marbles and metabasalts; the ages of the metasediments have been assigned solely by analogy with other sediments of the Western Alps, due to the absence of fossils. The Monometamorphic Cover Complex can be considered as the autochthonous cover of the Sesia Lanzo Zone because of the primary contacts with the basement and because of the presence of preAlpine HT basement blocks in the cover sequences. 3) The pre-Alpine high temperature (HT) Basement Complex (or `'Seconda Zona Diorito-Kinzigitica''), comprises HT Hercynian rocks like kinzigites, amphibolites, granulites and calcite marbles; this Complex is always located between the Internal and the External Units and can be followed continuously for several kilometers south of the Gressoney Valley to the Orco Valley. A schematic evolution for the Sesia Lanzo Zone is proposed; based on available data together with new geochronological data, this study shows that the internal and external parts of the polymetamorphic basement of the Sesia Zone experienced different cooling histories .
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.
Resumo:
High-intensity intermittent training in hypoxia: A double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res 29(1): 226-237, 2015-This study examined the effects of 5 weeks (∼60 minutes per training, 2 d·wk) of run-based high-intensity repeated-sprint ability (RSA) and explosive strength/agility/sprint training in either normobaric hypoxia repeated sprints in hypoxia (RSH; inspired oxygen fraction [FIO2] = 14.3%) or repeated sprints in normoxia (RSN; FIO2 = 21.0%) on physical performance in 16 highly trained, under-18 male footballers. For both RSH (n = 8) and RSN (n = 8) groups, lower-limb explosive power, sprinting (10-40 m) times, maximal aerobic speed, repeated-sprint (10 × 30 m, 30-s rest) and repeated-agility (RA) (6 × 20 m, 30-s rest) abilities were evaluated in normoxia before and after supervised training. Lower-limb explosive power (+6.5 ± 1.9% vs. +5.0 ± 7.6% for RSH and RSN, respectively; both p < 0.001) and performance during maximal sprinting increased (from -6.6 ± 2.2% vs. -4.3 ± 2.6% at 10 m to -1.7 ± 1.7% vs. -1.3 ± 2.3% at 40 m for RSH and RSN, respectively; p values ranging from <0.05 to <0.01) to a similar extent in RSH and RSN. Both groups improved best (-3.0 ± 1.7% vs. -2.3 ± 1.8%; both p ≤ 0.05) and mean (-3.2 ± 1.7%, p < 0.01 vs. -1.9 ± 2.6%, p ≤ 0.05 for RSH and RSN, respectively) repeated-sprint times, whereas sprint decrement did not change. Significant interactions effects (p ≤ 0.05) between condition and time were found for RA ability-related parameters with very likely greater gains (p ≤ 0.05) for RSH than RSN (initial sprint: 4.4 ± 1.9% vs. 2.0 ± 1.7% and cumulated times: 4.3 ± 0.6% vs. 2.4 ± 1.7%). Maximal aerobic speed remained unchanged throughout the protocol. In youth highly trained football players, the addition of 10 repeated-sprint training sessions performed in hypoxia vs. normoxia to their regular football practice over a 5-week in-season period was more efficient at enhancing RA ability (including direction changes), whereas it had no additional effect on improvements in lower-limb explosive power, maximal sprinting, and RSA performance.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
BACKGROUND: Few European studies have investigated how cardiovascular risk factors (CRF) in adults relate to those observed in younger generations. OBJECTIVE: To explore this issue in a Swiss region using two population health surveys of 3636 adolescents ages 9-19 years and 3299 adults ages 25-74 years. METHODS: Age patterns of continuous CRF were estimated by robust locally weighted regression and those of high-risk groups were calculated using adult criteria with appropriate adjustment for children. RESULTS: Gender differences in height, weight, blood pressure, and HDL cholesterol observed in adults were found to emerge in adolescents. Overweight, affecting 10-12% of adolescents, was increasing steeply in young adults (three times among males and twice among females) in parallel with inactivity. Median age at smoking initiation was decreasing rapidly from 18 to 20 years in young adults to 15 in adolescents. A statistically significant social gradient in disfavor of the lower education level was observed for overweight in all age groups of women above 16 (odds ratios (ORs) 2.4 to 3.3, P < 0.01), for inactivity in adult males (ORs 1.6 to 2.0, P < 0.05), and for regular smoking in older adolescents (OR 1.9 for males, 2.7 for females, P < 0.005), but not for elevated blood pressure. CONCLUSION: Discontinuities in the cross-sectional age patterns of CRF indicated the emergence of a social gradient and the need for preventive actions against the early adoption of persistent unhealthy behaviors, to which low-educated girls and women are particularly exposed.
Resumo:
The distribution of mitochondrial control region-sequence polymorphism was investigated in 15 populations of Crocidura russula along an altitudinal gradient in western Switzerland. High-altitude populations are smaller, sparser and appear to undergo frequent bottlenecks. Accordingly, they showed a loss of rare haplotypes, but unexpectedly, were less differentiated than lowland populations. Furthermore, the major haplotypes segregated significantly with altitude. The results were inconsistent with a simple model of drift and dispersal. They suggested instead a role for historical patterns of colonization, or, alternatively, present-day selective forces acting on one of the mitochondrial genes involved in metabolic pathways.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.
Resumo:
Aim: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventro-intermediate (Vim) nucleus of the thalamus for tremor. We currently perform an indirect targeting, using the "quadrilatere of Guyot," as the Vim nucleus is not visible on current 3 Tesla (T) MRI acquisitions. The primary objective of the current study was to enhance anatomic imaging for Vim GKS using high-field (7 T) MRI, with the aim of refining the visualization and precision of anatomical targeting. Method: Five young healthy subjects (mean age 23 years) were scanned both on 3 and 7 T MRI in Lausanne University Hospital (CHUV) and Center for Biomedical Imaging (CIBM). Classical T1-weighted MPRAGE, T2 CISS sequences (replacing former ventriculography) and diffusion tensor imaging were acquired at 3T. We obtained high-resolution susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated for the first time into Leksell Gamma Plan® (LGP) software and co-registered with the 3T images. A simulation of targeting of the Vim was done using the "quadrilatere of Guyot" methodology on the 3T images. Furthermore, a correlation with the position of the found target on SWI was performed. The atlas of Morel et al. was used to confirm the findings on a detailed computer analysis outside LGP. Also, 3T and 7T MRI of one patient undergoing GKS Vim thalamotomy, were obtained before and 2 years after the procedure, and studied similarly. Results: The use of SWI provided a superior resolution and improved image contrast within the central gray matter. This allowed visualization and direct delineation of groups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed with the "quadrilatere of Guyot" method on 3 T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim target area was created on the basis of 3T and 7T images. Conclusion: This is the first report of the integration of SWI high-field MRI into the LGP in healthy subjects and in one patient treated GKS Vim thalamotomy. This approach aims at the improvement of targeting validation and further direct targeting of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T seems to show a very good anatomical matching.
Resumo:
OBJECTIVES: Lesion detection and characterization in multiple sclerosis (MS) are an essential part of its clinical diagnosis and an important research field. In this pilot study, we applied the recently introduced two inversion-contrast magnetization-prepared rapid gradient echo sequence (MP2RAGE) to patients with early-stage MS.¦MATERIALS AND METHODS: The MP2RAGE is a 3-dimensional (3D) magnetization-prepared rapid gradient echo derivative providing homogeneous T1 weighting and simultaneous T1 mapping. The MP2RAGE performance was compared with that of 2 clinical routine sequences (2D fluid-attenuated inversion recovery [FLAIR] and 3D magnetization-prepared rapid gradient echo [MP-RAGE]) and 2 state-of-the art clinical research sequences (the 3D FLAIR-SPACE [sampling perfection with application-optimized contrasts by using different flip-angle evolutions], a fluid-attenuated variable flip-angle fast spin echo technique, and the 3D double-inversion recovery SPACE). A cohort of 10 early-stage female MS patients (age, 31.6 ± 4.7 years; disease duration, 3.8 ± 1.9 years; median expanded disability status scale score, 1.75) and 10 age- and gender-matched controls were enrolled after approval of the local institutional review board was obtained. Multiple sclerosis lesions were identified and assigned to brain locations and tissue types by two experienced physicians in all 5 contrasts. Subsequently, lesions were manually delineated for comparison and statistical analysis of lesion count, volume and quantitative measures.¦RESULTS AND CONCLUSIONS: The results show that the 3D T1-weighted high-resolution MP2RAGE contrast provides a sensitive means for MS lesion assessment. The additional quantitative T1 relaxation time maps obtained with the MP2RAGE provide further potential diagnostic and prognostic information that could help (a) to better discriminate lesion subtypes and (b) to stage and predict the activity and the evolution of MS. Results also indicate that the T2-weighted double-inversion recovery and FLAIR-SPACE contrasts are attractive complements to the MP2RAGE for lesion detection.