127 resultados para Food preparation
Resumo:
Guex, KJ, Lugrin, V, Borloz, S, and Millet, GP. Influence on strength and flexibility of a swing phase-specific hamstring eccentric program in sprinters' general preparation. J Strength Cond Res 30(2): 525-532, 2016-Hamstring injuries are common in sprinters and mainly occur during the terminal swing phase. Eccentric training has been shown to reduce hamstring injury rate by improving several risk factors. The aim of this study was to test the hypothesis that an additional swing phase-specific hamstring eccentric training in well-trained sprinters performed at the commencement of the winter preparation is more efficient to improve strength, ratio, optimum angle, and flexibility than a similar program without hamstring eccentric exercises. Twenty sprinters were randomly allocated to an eccentric (n = 10) or a control group (n = 10). Both groups performed their usual track and field training throughout the study period. Sprinters in the eccentric group performed an additional 6-week hamstring eccentric program, which was specific to the swing phase of the running cycle (eccentric high-load open-chain kinetic movements covering the whole hamstring length-tension relationship preformed at slow to moderate velocity). Isokinetic and flexibility measurements were performed before and after the intervention. The eccentric group increased hamstring peak torques in concentric at 60 degrees .s by 16% (p < 0.001) and at 240 degrees .s by 10% (p < 0.01), in eccentric at 30 degrees .s by 20% (p < 0.001) and at 120 degrees .s by 22% (p < 0.001), conventional and functional ratios by 12% (p < 0.001), and flexibility by 4 degrees (p < 0.01), whereas the control group increased hamstring peak torques only in eccentric at 30 degrees .s by 6% (p </= 0.05) and at 120 degrees .s by 6% (p < 0.01). It was concluded that an additional swing phase-specific hamstring eccentric training in sprinters seems to be crucial to address different risk factors for hamstring strain injuries, such as eccentric and concentric strength, hamstring-to-quadriceps ratio ratio, and flexibility.
Resumo:
Barn owl (Tyto alba) siblings preen and offer food items to one another, behaviours that can be considered prosocial because they benefit a conspecific by relieving distress or need. In experimental broods, we analysed whether such behaviours were reciprocated, preferentially exchanged between specific phenotypes, performed to avoid harassment and food theft or signals of hierarchy status. Three of the results are consistent with the hypothesis of direct reciprocity. First, food sharing was reciprocated in three-chick broods but not in pairs of siblings, that is when nestlings could choose a partner with whom to develop a reciprocating interaction. Second, a nestling was more likely to give a prey item to its sibling if the latter individual had preened the former. Third, siblings matched their investment in preening each other. Manipulation of age hierarchy showed that food stealing was directed towards older siblings but was not performed to compensate for a low level of cooperation received. Social behaviours were related to melanin-based coloration, suggesting that animals may signal their propensity to interact socially. The most prosocial phenotype (darker reddish) was also the phenotype that stole more food, and the effect of coloration on prosocial behaviour depended upon rank and sex, suggesting that colour-related prosociality is state dependent.
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Resumo:
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Resumo:
Cardiovascular disease is the leading cause of death worldwide. Within this subset, coronary artery disease (CAD) is the most prevalent. Magnetic resonance angiography (MRA) is an emerging technique that provides a safe, non-invasive way of assessing CAD progression. To generate contrast between tissues, MR images are weighted according to the magnetic properties of those tissues. In cardiac MRI, T2 contrast, which is governed by the rate of transverse signal loss, is often created through the use of a T2-Preparation module. T2-Preparation, or T2-Prep, is a magnetization preparation scheme used to improve blood/myocardium contrast in cardiac MRI. T2-Prep methods generally use a non-selective +90°, 180°, 180°, -90° train of radiofrequency (RF) pulses (or variant thereof), to tip magnetization into the transverse plane, allow it to evolve, and then to restore it to the longitudinal plane. A key feature in this process is the combination of a +90° and -90° RF pulse. By changing either one of these, a mismatch occurs between signal excitation and restoration. This feature can be exploited to provide additional spectral or spatial selectivity. In this work, both of these possibilities are explored. The first - spectral selectivity - has been examined as a method of improving fat saturation in coronary MRA. The second - spatial selectivity - has been examined as a means of reducing imaging time by decreasing the field of view, and as a method of reducing artefacts originating from the tissues surrounding the heart. Two additional applications, parallel imaging and self-navigation, are also presented. This thesis is thus composed of four sections. The first, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", was originally published in the journal Magnetic Resonance in Medicine (MRM) with co-authors Ruud B. van Heeswijk and Matthias Stuber. The second, "Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", again with co-authors Ruud van Heeswijk and Matthias Stuber, was also published in the journal MRM. The third, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA-accelerated image quality in MRA of the right coronary artery", written with co-authors Jerome Yerly and Matthias Stuber, has been submitted to the "Journal of Cardiovascular Magnetic Resonance", and the fourth, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", with co¬authors Jerome Chaptinel, Giulia Ginami, Gabriele Bonanno, Simone Coppo, Ruud van Heeswijk, Davide Piccini, and Matthias Stuber, is undergoing internal review prior to submission to the journal MRM. -- Les maladies cardiovasculaires sont la cause principale de décès dans le monde : parmi celles-ci, les maladies coronariennes sont les plus répandues. L'angiographie par résonance magnétique (ARM) est une technique émergente qui fournit une manière sûre, non invasive d'évaluer la progression de la coronaropathie. Pour obtenir un contraste entre les tissus, les images d'IRM sont pondérées en fonction des propriétés magnétiques de ces tissus. En IRM cardiaque, le contraste en T2, qui est lié à la décroissance du signal transversal, est souvent créé grâce à l'utilisàtion d'un module de préparation T2. La préparation T2, ou T2-Prep, est un système de préparation de l'aimantation qui est utilisé pour améliorer le contraste entre le sang et le myocarde lors d'une IRM cardiaque. Les méthodes de T2-Prep utilisent généralement une série non-sélective d'impulsions de radiofréquence (RF), typiquement [+ 90°, 180°, 180°, -90°] ou une variante, qui bascule l'aimantation dans le plan transversal, lui permet d'évoluer, puis la restaure dans le plan longitudinal. Un élément clé de ce processus est la combinaison des impulsions RF de +90° et -90°. En changeant l'une ou l'autre des impulsions, un décalage se produit entre l'excitation du signal et de la restauration. Cette fonction peut être exploitée pour fournir une sélectivité spectrale ou spatiale. Dans cette thèse, les deux possibilités sont explorées. La première - la sélectivité spectrale - a été examinée comme une méthode d'améliorer la saturation de la graisse dans l'IRM coronarienne. La deuxième - la sélectivité spatiale - a été étudiée comme un moyen de réduire le temps d'imagerie en diminuant le champ de vue, et comme une méthode de réduction des artefacts provenant des tissus entourant le coeur. Deux applications supplémentaires, l'imagerie parallèle et la self-navigation, sont également présentées. Cette thèse est ainsi composée de quatre sections. La première, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", a été publiée dans la revue médicale Magnetic Resonance .in Medicine (MRM) avec les co-auteurs Ruud B. van Heeswijk et Matthias Stuber. La deuxième, Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", encore une fois avec les co-auteurs Ruud van Heeswijk et Matthias Stuber, a également été publiée dans le journal MRM. La troisième, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA- accelerated image quality in MRA of the right coronary artery", écrite avec les co-auteurs Jérôme Yerly et Matthias Stuber, a été présentée au "Journal of Cardiovascular Magnetic Resonance", et la quatrième, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", avec les co-auteurs Jérôme Chaptinel, Giulia Ginami, Gabriele Bonanno , Simone Coppo, Ruud van Heeswijk, Davide Piccini, et Matthias Stuber, subit un examen interne avant la soumission à la revue MRM.