178 resultados para FETAL ABNORMALITIES
Resumo:
Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.
Resumo:
Background: With the aging of the population, the heart failure (HF) incidence and prevalence trends are expected to significantly worsen unless concentrated prevention efforts are undertaken. ECG abnormalities are common in the elderly but data are limited for their association with HF risk. Objective: To assess whether baseline ECG abnormalities or dynamic changes are associated with an increased risk of HF. Method: A prospective cohort study of 2915 participants aged 70 to 79 years without a preexisting HF followed for a median period of 11.4 (IQR 7.0-11.7) years from the Health Aging and Body Composition study. The Minnesota Code was used to define major and minor ECG abnormalities at baseline and at 4-year. Main outcome measure was adjudicated incident HF events. Using Cox models, the (1) the association between ECG abnormalities and incident HF and (2) incremental value of adding ECG to the Health ABC HF Risk Score, was assessed. Results: At baseline, 380 participants (13.0%) had minor and 620 (21.3%) had major ECG abnormalities. During follow-up, 485 (16.6%) participants developed incident HF. After adjusting for the eight clinical variables in the Health ABC HF Risk Score, the hazard ratio (HR) was 1.27 (95% confidence interval [CI] 0.96-1.68) for minor and 1.99 (CI 1.61-2.44) for major ECG abnormalities (P for trend <0.001) compared to no ECG abnormalities. The association did not change according to presence of baseline CHD. At 4-year, 263 participants developed new and 549 had persistent abnormalities and both were associated with increased HF risk (HR = 1.94, CI 1.38-2.72 for new and HR=2.35, CI 1.82-3.02 for persistent compared to no ECG abnormalities). Baseline ECG correctly reclassified 10.6% of overall participants across the categories of the Health ABC HF Risk Score. Conclusion: Among older adults, baseline ECG abnormalities and changes in them over time are common; both are associated with an increased risk of HF. Whether ECG should be incorporated in routine screening of older adults should be evaluated in randomized controlled trials.
Resumo:
Introduction: A standardized three-dimensional ultrasonographic (3DUS) protocol is described that allows fetal face reconstruction. Ability to identify cleft lip with 3DUS using this protocol was assessed by operators with minimal 3DUS experience. Material and Methods: 260 stored volumes of fetal face were analyzed using a standardized protocol by operators with different levels of competence in 3DUS. The outcomes studied were: (1) the performance of post-processing 3D face volumes for the detection of facial clefts; (2) the ability of a resident with minimal 3DUS experience to reconstruct the acquired facial volumes, and (3) the time needed to reconstruct each plane to allow proper diagnosis of a cleft. Results: The three orthogonal planes of the fetal face (axial, sagittal and coronal) were adequately reconstructed with similar performance when acquired by a maternal-fetal medicine specialist or by residents with minimal experience (72 vs. 76%, p = 0.629). The learning curve for manipulation of 3DUS volumes of the fetal face corresponds to 30 cases and is independent of the operator's level of experience. Discussion: The learning curve for the standardized protocol we describe is short, even for inexperienced sonographers. This technique might decrease the length of anatomy ultrasounds and improve the ability to visualize fetal face anomalies.
Resumo:
CONTEXT: In populations of older adults, prediction of coronary heart disease (CHD) events through traditional risk factors is less accurate than in middle-aged adults. Electrocardiographic (ECG) abnormalities are common in older adults and might be of value for CHD prediction. OBJECTIVE: To determine whether baseline ECG abnormalities or development of new and persistent ECG abnormalities are associated with increased CHD events. DESIGN, SETTING, AND PARTICIPANTS: A population-based study of 2192 white and black older adults aged 70 to 79 years from the Health, Aging, and Body Composition Study (Health ABC Study) without known cardiovascular disease. Adjudicated CHD events were collected over 8 years between 1997-1998 and 2006-2007. Baseline and 4-year ECG abnormalities were classified according to the Minnesota Code as major and minor. Using Cox proportional hazards regression models, the addition of ECG abnormalities to traditional risk factors were examined to predict CHD events. MAIN OUTCOME MEASURE: Adjudicated CHD events (acute myocardial infarction [MI], CHD death, and hospitalization for angina or coronary revascularization). RESULTS: At baseline, 276 participants (13%) had minor and 506 (23%) had major ECG abnormalities. During follow-up, 351 participants had CHD events (96 CHD deaths, 101 acute MIs, and 154 hospitalizations for angina or coronary revascularizations). Both baseline minor and major ECG abnormalities were associated with an increased risk of CHD after adjustment for traditional risk factors (17.2 per 1000 person-years among those with no abnormalities; 29.3 per 1000 person-years; hazard ratio [HR], 1.35; 95% CI, 1.02-1.81; for minor abnormalities; and 31.6 per 1000 person-years; HR, 1.51; 95% CI, 1.20-1.90; for major abnormalities). When ECG abnormalities were added to a model containing traditional risk factors alone, 13.6% of intermediate-risk participants with both major and minor ECG abnormalities were correctly reclassified (overall net reclassification improvement [NRI], 7.4%; 95% CI, 3.1%-19.0%; integrated discrimination improvement, 0.99%; 95% CI, 0.32%-2.15%). After 4 years, 208 participants had new and 416 had persistent abnormalities. Both new and persistent ECG abnormalities were associated with an increased risk of subsequent CHD events (HR, 2.01; 95% CI, 1.33-3.02; and HR, 1.66; 95% CI, 1.18-2.34; respectively). When added to the Framingham Risk Score, the NRI was not significant (5.7%; 95% CI, -0.4% to 11.8%). CONCLUSIONS: Major and minor ECG abnormalities among older adults were associated with an increased risk of CHD events. Depending on the model, adding ECG abnormalities was associated with improved risk prediction beyond traditional risk factors.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.
Resumo:
OBJECTIVES: To determine the excess risk of non-chromosomal congenital anomaly (NCA) among teenage mothers and older mothers. DESIGN AND SETTING: Population-based prevalence study using data from EUROCAT congenital anomaly registers in 23 regions of Europe in 15 countries, covering a total of 1.75 million births from 2000 to 2004. PARTICIPANTS: A total of 38,958 cases of NCA that were live births, fetal deaths with gestational age > or = 20 weeks or terminations of pregnancy following prenatal diagnosis of a congenital anomaly. MAIN OUTCOME MEASURES: Prevalence of NCA according to maternal age, and relative risk (RR) of NCA and 84 standard NCA subgroups compared with mothers aged 25-29. RESULTS: The crude prevalence of all NCA was 26.5 per 1000 births in teenage mothers (<20 years), 23.8 for mothers 20-24 years, 22.5 for mothers 25-29 years, 21.5 for mothers 30-34 years, 21.4 for mothers 35-39 years and 22.6 for mothers 40-44 years. The RR adjusted for country for teenage mothers was 1.11 (95% CI 1.06-1.17); 0.99 (95% CI 0.96-1.02) for mothers 35-39; and 1.01 (95% CI 0.95-1.07) for mothers 40-44. The pattern of maternal age-related risk varied significantly between countries: France, Ireland and Portugal had higher RR for teenage mothers, Germany and Poland had higher RR for older mothers. The maternal age-specific RR varied for different NCAs. Teenage mothers were at a significantly greater risk (P < 0.01) of gastroschisis, maternal infection syndromes, tricuspid atresia, anencephalus, nervous system and digestive system anomalies while older mothers were at a significantly greater risk (P < 0.01) of fetal alcohol syndrome, encephalocele, oesophageal atresia and thanatophoric dwarfism. CONCLUSIONS: Clinical and public health interventions are needed to reduce environmental risk factors for NCA, giving special attention to young mothers among whom some risk factors are more prevalent. Reassurance can be given to older mothers that their age in itself does not confer extra risk for NCA.
Resumo:
OBJECTIVE: To examine the occurrence of arthrogryposis multiplex congenita (AMC) in Europe and to identify possible risk factors. STUDY DESIGN: Retrospective population-based epidemiological study using EUROCAT congenital anomaly registries. The study population included all cases of AMC (based on WHO ICD-9 or ICD-10 codes) that were livebirths (LB), fetal deaths (FD) from 20 weeks gestation and underwent termination of pregnancy for fetal anomaly (TOPFA), 1980-2006. RESULTS: Among 8.9 million births covered by 24 EUROCAT congenital anomaly registries, 757 AMC cases were reported. This gives a prevalence of 8.5 per 100,000. Five hundred and four (67%) AMC cases were LB, 199 (26%) cases were TOPFA, and FD occurred in 54 (7%) cases. First week survival status was known for 381 of the 504 LB (76%), of whom 87 (23%) died within the first week of life. Perinatal mortality associated with AMC was 32%. Two hundred and eighty-two (37%) cases had isolated AMC, 90 (12%) had additional syndrome or chromosomal anomalies and 385 (51%) had other major malformations. The same or similar anomaly was reported in 13% of siblings and in 12% of the mother's own family background. Information on prenatal testing was available for 521 cases of which 360 tested positive for a congenital anomaly, representing a sensitivity of 69%. Information on maternal illness before and during pregnancy and medication use in the first trimester was available for approximately a third of the mothers, of whom the vast majority reported no maternal illness or medication use. CONCLUSION: AMC is a rare occurrence, with a reported prevalence of 1:12,000. In this study, while information on potential risk factors such as maternal disease or maternal use of drugs was limited, they did not appear to be associated with the occurrence of AMC. AMC was lethal in a third of cases, either in utero or during the first week of life, although this may not be solely attributed to AMC as most cases had additional malformations.
Resumo:
The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.
Resumo:
Weakening of cardiac function in patients with heart failure results from a loss of cardiomyocytes in the damaged heart. Cell replacement therapies as a way to induce myocardial regeneration in humans could represent attractive alternatives to classical drug-based approaches. However, a suitable source of precursor cells, which could produce a functional myocardium after transplantation, remains to be identified. In the present study, we isolated cardiovascular precursor cells from ventricles of human fetal hearts at 12 weeks of gestation. These cells expressed Nkx2.5 but not late cardiac markers such as α-actinin and troponin I. In addition, proliferating cells expressed the mesenchymal stem cell markers CD73, CD90, and CD105. Evidence for functional cardiogenic differentiation in vitro was demonstrated by the upregulation of cardiac gene expression as well as the appearance of cells with organized sarcomeric structures. Importantly, differentiated cells presented spontaneous and triggered calcium signals. Differentiation into smooth muscle cells was also detected. In contrast, precursor cells did not produce endothelial cells. The engraftment and differentiation capacity of green fluorescent protein (GFP)-labeled cardiac precursor cells were then tested in vivo after transfer into the heart of immunodeficient severe combined immunodeficient mice. Engrafted human cells were readily detected in the mouse myocardium. These cells retained their cardiac commitment and differentiated into α-actinin-positive cardiomyocytes. Expression of connexin-43 at the interface between GFP-labeled and endogenous cardiomyocytes indicated that precursor-derived cells connected to the mouse myocardium. Together, these results suggest that human ventricular nonmyocyte cells isolated from fetal hearts represent a suitable source of precursors for cell replacement therapies.
Resumo:
Prenatal ultrasound can often reliably distinguish fetal anatomic anomalies, particularly in the hands of an experienced ultrasonographer. Given the large number of existing syndromes and the significant overlap in prenatal findings, antenatal differentiation for syndrome diagnosis is difficult. We constructed a hierarchic tree of 1140 sonographic markers and submarkers, organized per organ system. Subsequently, a database of prenatally diagnosable syndromes was built. An internet-based search engine was then designed to search the syndrome database based on a single or multiple sonographic markers. Future developments will include a database with magnetic resonance imaging findings as well as further refinements in the search engine to allow prioritization based on incidence of syndromes and markers.
Resumo:
To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O₂, 80% O₂ at Denver's altitude, ∼65% O₂ at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O₂ rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O₂ at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy.